smd_lgrr: Computing Covariance between Standardized Mean Difference and...

Description Usage Arguments Value Author(s) References Examples

View source: R/mix.vcov.R

Description

The function smd_lgrr computes covariance between standardized mean difference and log risk ratio. See mix.vcov for effect sizes of the same or different types.

Usage

1
2
3
smd_lgrr(d, r, n1c, n2c, n1t, n2t,
         n12c = min(n1c, n2c), n12t = min(n1t, n2t),
         s2c, s2t, f2c, f2t, sd1c, sd1t)

Arguments

d

Standardized mean difference for outcome 1.

r

Correlation coefficient of the two outcomes.

n1c

Number of participants reporting outcome 1 in the control group.

n2c

Number of participants reporting outcome 2 in the control group.

n1t

Number of participants reporting outcome 1 in the treatment group.

n2t

Number of participants reporting outcome 2 in the treatment group.

n12c

Number of participants reporting both outcome 1 and outcome 2 in the control group. By default, it is equal to the smaller number between n1c and n2c.

n12t

Number defined in a similar way as n12c for the treatment group.

s2c

Number of participants with event for outcome 2 (dichotomous) in the control group.

s2t

Defined in a similar way as s2c for the treatment group.

f2c

Number of participants without event for outcome 2 (dichotomous) in the control group.

f2t

Defined in a similar way as f2c for the treatment group.

sd1c

Sample standard deviation of outcome 1 for the control group.

sd1t

Defined in a similar way as sd1c for the treatment group.

Value

g

Computed Hedge's g from the input argument d for outcome 1.

lgrr

Computed log risk ratio for outcome 2.

v

Computed covariance.

Author(s)

Min Lu

References

Ahn, S., Lu, M., Lefevor, G.T., Fedewa, A. & Celimli, S. (2016). Application of meta-analysis in sport and exercise science. In N. Ntoumanis, & N. Myers (Eds.), An Introduction to Intermediate and Advanced Statistical Analyses for Sport and Exercise Scientists (pp.233-253). Hoboken, NJ: John Wiley and Sons, Ltd.

Wei, Y., & Higgins, J. (2013). Estimating within study covariances in multivariate meta-analysis with multiple outcomes. Statistics in Medicine, 32(7), 119-1205.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
## simple example
smd_lgrr(d = 1, r = 0.3, n1c = 34, n2c = 35, n1t = 25, n2t = 32,
         s2c = 5, s2t = 8, f2c = 30, f2t = 24, sd1t = 0.4, sd1c = 8)
## calculate covariances for variable SBP and DD in Geeganage2010 data
attach(Geeganage2010)
SBP_DD <- unlist(lapply(1:nrow(Geeganage2010), function(i){smd_lgrr(d = SMD_SBP, r = 0.3,
                 n1c = nc_SBP[i], n2c = nc_DD[i], n1t = nt_SBP[i], n2t = nt_DD[i],
                 sd1t = sdt_SBP[i], s2t = st_DD[i], sd1c = sdc_SBP[i], s2c = sc_DD[i],
                 f2c = nc_DD[i] - sc_DD[i], f2t = nt_DD[i] - st_DD[i])$v}))
SBP_DD
## the function mix.vcov() should be used for dataset

metavcov documentation built on Oct. 25, 2021, 9:08 a.m.