Nothing
#' Artificial dataset with continuous response
#'
#' The ART data set mimics the GBSG breast cancer study in terms of the
#' distribution of predictors and correlation structure.
#'
#' @name art
#' @docType data
#' @usage data(art)
#' @keywords data
#' @format The dataset has 250 observations and 10 covariates
#' \describe{
#' \item{y}{Continuous response variable.}
#' \item{x1, x3, x5-x7, x10}{Continuous covariates.}
#' \item{x2}{Binary variable.}
#' \item{x4}{Ordinal variable with 3 levels.}
#' \item{x8}{Binary variable.}
#' \item{x9}{Nominal variable with 3 levels.}
#' }
"art"
#' Breast cancer dataset used in the Royston and Sauerbrei (2008) book.
#'
#' @name gbsg
#' @docType data
#' @usage data(gbsg)
#' @keywords data
#' @format A dataset with 686 observations and 11 variables.
#' \describe{
#' \item{id}{Patient identifier.}
#' \item{age}{Age in years.}
#' \item{meno}{Menopausal status (0 = premeno, 1 = postmeno).}
#' \item{size}{Tumor size (mm).}
#' \item{grade}{Tumor grade.}
#' \item{nodes}{Number of positive lymph nodes.}
#' \item{enodes}{exp(-0.12*nodes).}
#' \item{pgr}{Progesterone receptor status.}
#' \item{er}{Estrogen receptor status.}
#' \item{hormon}{Tamoxifen treatment.}
#' \item{rectime}{Time (days) to death or cancer recurrence.}
#' \item{censrec}{Censoring (0 = censored, 1 = event).}
#' }
"gbsg"
#' Pima Indians dataset used in the Royston and Sauerbrei (2008) book.
#'
#' The dataset arises from an investigation of potential predictors of
#' the onset of diabetes in a cohort of 768 female Pima Indians of whom 268
#' developed diabetes. Missing values were imputed using the ice procedure
#' for Stata.
#'
#' @name pima
#' @docType data
#' @usage data(pima)
#' @keywords data
#' @format A dataset with 768 observations and 9 variables.
#' \describe{
#' \item{id}{Patient identifier.}
#' \item{pregnant}{Number of times pregnant.}
#' \item{glucose}{Plasma glucose concentration at 2h in an oral glucose tolerance test.}
#' \item{diastolic}{Diastolic blood pressure in mmHg.}
#' \item{triceps}{Triceps skin fold thickness in mm.}
#' \item{insulin}{2-h serum insulin.}
#' \item{bmi}{Body mass index.}
#' \item{diabetes}{Diabetes pedigree function.}
#' \item{age}{Age in years.}
#' \item{y}{Binary outcome variable (diabetes, yes/no).}
#' }
"pima"
#' Prostate cancer dataset used in the Royston and Sauerbrei (2008) book.
#'
#' @name prostate
#' @docType data
#' @usage data(prostate)
#' @keywords data
#' @format A dataset with 97 observations and 8 variables.
#' \describe{
#' \item{obsno}{Observation number.}
#' \item{age}{Age in years.}
#' \item{svi}{Seminal vessel invasion (yes/no).}
#' \item{pgg45}{Percentage Gleason score 4 or 5.}
#' \item{cavol}{Cancer volume (mm).}
#' \item{weight}{Prostate weight (g).}
#' \item{bph}{Amount of benign prostatic hyperplasia (g).}
#' \item{cp}{Amount of capsular penetration (g).}
#' \item{lpsa}{Log PSA concentration (outcome variable).}
#' }
"prostate"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.