bamV | R Documentation |
These are wrapper that fits a GAM model using mgcv::gam or mgcv::bam and
converts it to a gamViz
object using the getViz function.
It is essentially a shortcut.
bamV(
formula,
family = gaussian(),
data = list(),
method = "fREML",
aGam = list(),
aViz = list()
)
gamV(
formula,
family = gaussian(),
data = list(),
method = "REML",
aGam = list(),
aViz = list()
)
formula, family, data, method |
same arguments as in mgcv::gam or mgcv::bam. |
aGam |
list of further arguments to be passed to mgcv::gam or mgcv::bam. |
aViz |
list of arguments to be passed to getViz. |
An object of class "gamViz" which can, for instance, be plotted using plot.gamViz.
##### gam example
# Simulate data
library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=1000,dist="normal",scale=2)
# Fit GAM and get gamViz object
b <- gamV(y~s(x0)+s(x1, x2)+s(x3), data = dat,
aGam = list(scale = 2), aViz = list("nsim" = 20))
# This is equivalent to doing
# 1. Fit GAM
# b <- gam(y~s(x0)+s(x1, x2)+s(x3), data=dat, method="REML", scale = 2)
# 2. Convert to gamViz object
# b <- getViz(b, nsim = 20)
# Either way, we plot first and third effects by doing
print(plot(b, select = c(1, 3)), pages = 1)
##### bam example
# Simulate data
library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=2000,dist="normal",scale=2)
# Fit using bam() and get gamViz object
b <- bamV(y~s(x0)+s(x1, x2)+s(x3), data = dat,
aGam = list(discrete = TRUE), aViz = list("nsim" = 0))
# Either way, we plot first and third effects by doing
print(plot(b, select = c(2)), pages = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.