Nothing
#' @name biData
#'
#' @description Example binary classification dataset. "Mine" is the positive case and
#' "Not Mine" is the background class. There are 178 samples from the "Mine" class and
#' 4,822 samples from the "Not Mine" class. Counts are relative to reference labels.
#' Class proportions are based on landscape proportions. There are a total of 5,000 samples.
#'
#' @docType data
#'
#' @title Example binary classification dataset
#'
#' @format
#' \describe{
#' \item{ref}{reference label}
#' \item{pred}{predicted label}
#' }
#'
#' @references Maxwell, A.E., Bester, M.S., Guillen, L.A., Ramezan, C.A., Carpinello, D.J., Fan, Y.,
#' Hartley, F.M., Maynard, S.M. and Pyron, J.L., 2020. Semantic segmentation deep learning for extracting
#' surface mine extents from historic topographic maps. Remote Sensing, 12(24), p.4145.
#'
#' @keywords datasets
NULL
#' @name mcData
#'
#' @description Example multiclass classification dataset with the following classes (counts relative to reference labels):
#' "Barren" (n=163), "Forest" (n=20,807), "Impervious" (n=426), "Low Vegetation" (n=3,182), "Mixed Dev" (n=520),
#' and "Water" (n=200). There are a total of 25,298 samples.
#'
#' @title Example multiclass classification dataset
#'
#' @docType data
#'
#' @format
#' \describe{
#' \item{ref}{reference label}
#' \item{pred}{predicted label}
#' }
#'
#' @references Maxwell, A.E., Strager, M.P., Warner, T.A., Ramezan, C.A., Morgan, A.N. and Pauley, C.E.,
#' 2019. Large-area, high spatial resolution land cover mapping using random forests, GEOBIA, and NAIP
#' orthophotography: Findings and recommendations. Remote Sensing, 11(12), p.1409.
#'
#' @keywords datasets
NULL
#' @name compareData
#'
#' @description Example multiclass classification dataset with the following wetland-related classes:
#' "PFO", "PEM", "RLP", and "Not". PFO = Palustrine Forested; PEM = Palustrine Emergent;
#' RLP = River, Lake, Pond; Not = Not Wetland. There are 600 examples from each class relative to the
#' reference labels.
#'
#' @docType data
#'
#' @title Data for multiclass classification comparison
#'
#' @format
#' \describe{
#' \item{ref}{correct label}
#' \item{rfRred}{random forest prediction}
#' \item{dfRred}{single decision tree prediction}
#' }
#'
#' @references These data are unpublished
#'
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.