Communications Backend for R

1. Mirai Parallel Clusters

mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023.

A 'miraiCluster' is recognised as one of the official cluster types in R 4.5, and may be created by parallel::makeCluster(type = "MIRAI"). This function calls make_cluster(), which may also be used to create a 'miraiCluster' directly.

Created clusters may be used for any function in the parallel base package such as parallel::clusterApply() or parallel::parLapply(), or the load-balanced versions such as parallel::parLapplyLB().

library(parallel)
library(mirai)

cl <- makeCluster(6, type = "MIRAI")
cl
#> < miraiCluster | ID: `26` nodes: 6 active: TRUE >
parLapply(cl, iris, mean)
#> $Sepal.Length
#> [1] 5.843333
#> 
#> $Sepal.Width
#> [1] 3.057333
#> 
#> $Petal.Length
#> [1] 3.758
#> 
#> $Petal.Width
#> [1] 1.199333
#> 
#> $Species
#> [1] NA

status() may be called on a 'miraiCluster` to query the number of connected nodes at any time.

status(cl)
#> $connections
#> [1] 6
#> 
#> $daemons
#> [1] "abstract://eb809f13097f9a03ba5cb5bb"
stopCluster(cl)

Making a cluster specifying 'url' without 'remote' causes the shell commands for manual deployment of nodes to be printed to the console.

cl <- make_cluster(n = 2, url = host_url())
#> Shell commands for deployment on nodes:
#> 
#> [1]
#> Rscript -e 'mirai::daemon("tcp://192.168.1.71:45111",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,2115398811,-2011965664,-789584735,1666662894,1025958295,-751939348))'
#> 
#> [2]
#> Rscript -e 'mirai::daemon("tcp://192.168.1.71:45111",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,1495377764,161492535,-451945023,2093847167,-1105055737,1737365375))'
stop_cluster(cl)

2. Foreach Support

A 'miraiCluster' may also be registered by doParallel for use with the foreach package.

Running some parallel examples for the foreach() function:

library(doParallel)
library(foreach)

cl <- makeCluster(6, type = "MIRAI")
registerDoParallel(cl)

# normalize the rows of a matrix
m <- matrix(rnorm(9), 3, 3)
foreach(i = 1:nrow(m), .combine = rbind) %dopar%
  (m[i, ] / mean(m[i, ]))
#>              [,1]       [,2]       [,3]
#> result.1 5.989529  1.1456413 -4.1351703
#> result.2 3.745199 -0.5989935 -0.1462058
#> result.3 3.007812  2.0183943 -2.0262067

# simple parallel matrix multiply
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b = iterators::iter(b, by='col'), .combine = cbind) %dopar%
  (a %*% b)
#>      [,1] [,2] [,3] [,4]
#> [1,]  276  304  332  360
#> [2,]  304  336  368  400
#> [3,]  332  368  404  440
#> [4,]  360  400  440  480

stopCluster(cl)


Try the mirai package in your browser

Any scripts or data that you put into this service are public.

mirai documentation built on June 26, 2025, 1:08 a.m.