mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023.
A 'miraiCluster' is recognised as one of the official cluster types, and may be created by parallel::makeCluster(type = "MIRAI")
from R 4.5 onwards.
This function calls make_cluster()
, which may also be used to directly create a 'miraiCluster'.
remote_config()
or ssh_config()
.Created clusters may be used for any function in the parallel
base package such as parallel::clusterApply()
or parallel::parLapply()
, or the load-balanced versions such as parallel::parLapplyLB()
.
library(parallel) library(mirai) cl <- makeCluster(6, type = "MIRAI") cl #> < miraiCluster | ID: `0` nodes: 6 active: TRUE > parLapply(cl, iris, mean) #> $Sepal.Length #> [1] 5.843333 #> #> $Sepal.Width #> [1] 3.057333 #> #> $Petal.Length #> [1] 3.758 #> #> $Petal.Width #> [1] 1.199333 #> #> $Species #> [1] NA
status()
may be called on a 'miraiCluster` to query the number of connected nodes at any time.
status(cl) #> $connections #> [1] 6 #> #> $daemons #> [1] "ipc:///tmp/468d15baad12987297924d3a" stopCluster(cl)
Making a cluster specifying 'url' without 'remote' causes the shell commands for manual deployment of nodes to be printed to the console.
cl <- make_cluster(n = 2, url = host_url()) #> Shell commands for deployment on nodes: #> #> [1] #> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,1353351353,-1043629786,-29560465,-1602291484,-248192363,-1183841710))' #> #> [2] #> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,-440398556,800923107,1329159622,2121404046,1811662990,825393618))' stop_cluster(cl)
A 'miraiCluster' may also be registered by doParallel
for use with the foreach
package.
Running some parallel examples for the foreach()
function:
library(doParallel) #> Loading required package: foreach #> Loading required package: iterators library(foreach) cl <- makeCluster(6, type = "MIRAI") registerDoParallel(cl) # normalize the rows of a matrix m <- matrix(rnorm(9), 3, 3) foreach(i = 1:nrow(m), .combine = rbind) %dopar% (m[i, ] / mean(m[i, ])) #> [,1] [,2] [,3] #> result.1 1.101225 0.4266552 1.472120 #> result.2 -1.268963 1.0011693 3.267793 #> result.3 -10.306468 -20.4872993 33.793767 # simple parallel matrix multiply a <- matrix(1:16, 4, 4) b <- t(a) foreach(b = iterators::iter(b, by='col'), .combine = cbind) %dopar% (a %*% b) #> [,1] [,2] [,3] [,4] #> [1,] 276 304 332 360 #> [2,] 304 336 368 400 #> [3,] 332 368 404 440 #> [4,] 360 400 440 480 stopCluster(cl)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.