Nothing
#' missoNet: Multi-Task Regression and Conditional Network Estimation with Missing Responses
#'
#' @description
#' \pkg{missoNet} fits a joint multivariate regression and conditional
#' dependency (precision–matrix) model when some response entries are missing.
#' The method estimates a sparse coefficient matrix \eqn{B} linking
#' predictors \eqn{X} to multivariate responses \eqn{Y}, together with a sparse
#' inverse covariance \eqn{\Theta} for the residuals in
#' \eqn{Y = \mathbf{1}\mu^{\mathsf{T}} + XB + E}, \eqn{E \sim \mathcal{N}(0, \Theta^{-1})}.
#' Responses may contain missing values (e.g., MCAR/MAR); predictors must be
#' finite. The package provides cross-validation, prediction, publication-ready
#' plotting, and simple simulation utilities.
#'
#' @details
#' \strong{Key features}
#' \itemize{
#' \item Joint estimation of \eqn{B} (regression) and \eqn{\Theta} (conditional network).
#' \item \eqn{\ell_1}-regularization on both \eqn{B} and \eqn{\Theta} with user-controlled grids.
#' \item K-fold cross-validation with optional 1-SE model selections.
#' \item Heatmap and 3D surface visualizations for CV error or GoF across
#' \eqn{(\lambda_B,\lambda_\Theta)}.
#' \item Fast prediction for new data using stored solutions.
#' \item Lightweight data generator for simulation studies.
#' }
#'
#' \strong{Workflow}
#' \enumerate{
#' \item Fit a model across a grid of penalties with \code{\link{missoNet}} or
#' select penalties via \code{\link{cv.missoNet}}.
#' \item Visualize the CV error/GoF surface with \code{\link{plot.missoNet}}.
#' \item Predict responses for new observations with \code{\link{predict.missoNet}}.
#' }
#'
#' @section Main functions:
#' \describe{
#' \item{\code{\link{missoNet}}}{Fit models over user-specified penalty grids for
#' \eqn{\lambda_B} and \eqn{\lambda_\Theta}; returns estimated
#' \eqn{\mu}, \eqn{B}, \eqn{\Theta}, and metadata (grids, GoF).}
#' \item{\code{\link{cv.missoNet}}}{Perform k-fold cross-validation over a penalty grid;
#' stores \code{est.min} and (optionally) \code{est.1se.beta},
#' \code{est.1se.theta}.}
#' \item{\code{\link{plot.missoNet}}}{S3 plotting method; heatmap or 3D scatter of CV error or GoF.}
#' \item{\code{\link{predict.missoNet}}}{S3 prediction method; returns
#' \eqn{\hat{Y} = \mathbf{1}\hat{\mu}^{\mathsf{T}} + X_\mathrm{new}\hat{B}} for a chosen solution.}
#' \item{\code{\link{generateData}}}{Generate synthetic datasets with controllable
#' dimensions, signal, and missingness mechanisms for benchmarking.}
#' }
#'
#' @examples
#' sim <- generateData(n = 100, p = 8, q = 5, rho = 0.1, missing.type = "MCAR")
#'
#' \donttest{
#' fit <- missoNet(X = sim$X, Y = sim$Z) # fit over a grid
#' plot(fit) # GoF heatmap
#'
#' cvfit <- cv.missoNet(X = sim$X, Y = sim$Z, kfold = 5, compute.1se = TRUE)
#' plot(cvfit, type = "scatter", plt.surf = TRUE) # CV error surface
#' yhat <- predict(cvfit, newx = sim$X, s = "lambda.min")
#' }
#'
#' @seealso
#' \code{\link{missoNet}}, \code{\link{cv.missoNet}}, \code{\link{plot.missoNet}},
#' \code{\link{predict.missoNet}}, \code{\link{generateData}},
#' and \code{browseVignettes("missoNet")} for tutorials.
#'
#' @section License:
#' GPL-2.
#'
#' @encoding UTF-8
#' @name missoNet-package
#' @aliases missoNet-package package
"_PACKAGE"
#'
#' @useDynLib missoNet, .registration = TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom graphics par
#' @importFrom grid gpar grid.rect grid.points unit
#' @importFrom stats quantile rbinom rnorm runif sd IQR cor cov mad median var
#' @importFrom utils setTxtProgressBar txtProgressBar
NULL
#> NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.