df.subset | R Documentation |
This function returns subsets of data frames which meet conditions.
df.subset(..., data, subset = NULL, drop = TRUE, check = TRUE)
... |
an expression indicating variables to select from the data frame
specified in |
data |
a data frame that contains the variables specified in the
argument |
subset |
character string with a logical expression indicating rows to
keep, e.g., |
drop |
logical: if |
check |
logical: if |
The argument ...
is used to specify an expression indicating the
variables to select from the data frame specified in data
, e.g.,
df.subset(x1, x2, x3, data = dat)
. There are seven operators which
can be used in the expression ...
:
.
) OperatorThe dot operator is used to select
all variables from the data frame specified in data
. For example,
df.subset(., data = dat)
selects all variables in dat
. Note
that this operator is similar to the function everything()
from the
tidyselect package.
+
) OperatorThe plus operator is used to select
variables matching a prefix from the data frame specified in data
. For
example, df.subset(+x, data = dat)
selects all variables with the
prefix x
. Note that this operator is equivalent to the function
starts_with()
from the tidyselect package.
-
) OperatorThe minus operator is used to select
variables matching a suffix from the data frame specified in data
. For
example, df.subset(-y, data = dat)
selects all variables with the
suffix y
. Note that this operator is equivalent to the function
ends_with()
from the tidyselect package.
~
) OperatorThe tilde operator is used to select
variables containing a word from the data frame specified in data
. For
example, df.subset(?al, data = dat)
selects all variables with the word
al
. Note that this operator is equivalent to the function
contains()
from the tidyselect package.
:
) operatorThe colon operator is used to select
a range of consecutive variables from the data frame specified in data
.
For example, df.subset(x:z, data = dat)
selects all variables from
x
to z
. Note that this operator is equivalent to the :
operator from the select
function in the dplyr package.
::
) OperatorThe double colon operator
is used to select numbered variables from the data frame specified in
data
. For example, df.subset(x1::x3, data = dat)
selects the
variables x1
, x2
, and x3
. Note that this operator is
similar to the function num_range()
from the tidyselect
package.
!
) OperatorThe exclamation point
operator is used to drop variables from the data frame specified in data
or for taking the complement of a set of variables. For example,
df.subset(., !x, data = dat)
selects all variables but x
in
dat
., df.subset(., !~x, data = dat)
selects all variables but
variables with the prefix x
, or df.subset(x:z, !x1:x3, data = dat)
selects all variables from x
to z
but excludes all variables
from x1
to x3
. Note that this operator is equivalent to the !
operator from the select
function in the dplyr package.
Note that operators can be combined within the same function call. For example,
df.subset(+x, -y, !x2:x4, z, data = dat)
selects all variables with
the prefix x
and with the suffix y
but excludes variables from
x2
to x4
and select variable z
.
Returns a data frame containing the variables and rows selected in the argument
...
and rows selected in the argument subset
.
Takuya Yanagida takuya.yanagida@univie.ac.at
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
df.duplicated
, df.merge
,
df.move
, df.rbind
,
df.rename
, df.sort
## Not run:
#-------------------------------------------------------------------------------
# Select single variables
# Example 1: Select 'Sepal.Length' and 'Petal.Width'
df.subset(Sepal.Length, Petal.Width, data = iris)
#-------------------------------------------------------------------------------
# Select all variables using the . operator
# Example 2a: Select all variables, select rows with 'Species' equal 'setosa'
# Note that single quotation marks ('') are needed to specify 'setosa'
df.subset(., data = iris, subset = "Species == 'setosa'")
# Example 2b: Select all variables, select rows with 'Petal.Length' smaller 1.2
df.subset(., data = iris, subset = "Petal.Length < 1.2")
#-------------------------------------------------------------------------------
# Select variables matching a prefix using the + operator
# Example 3: Select variables with prefix 'Petal'
df.subset(+Petal, data = iris)
#-------------------------------------------------------------------------------
# Select variables matching a suffix using the - operator
# Example 4: Select variables with suffix 'Width'
df.subset(-Width, data = iris)
#-------------------------------------------------------------------------------
# Select variables containing a word using the ~ operator
# Example 5: Select variables containing 'al'
df.subset(~al, data = iris)
#-------------------------------------------------------------------------------
# Select consecutive variables using the : operator
# Example 6: Select all variables from 'Sepal.Width' to 'Petal.Width'
df.subset(Sepal.Width:Petal.Width, data = iris)
#-------------------------------------------------------------------------------
# Select numbered variables using the :: operator
# Example 7: Select all variables from 'x1' to 'x3' and 'y1' to 'y3'
df.subset(x1::x3, y1::y3, data = anscombe)
#-------------------------------------------------------------------------------
# Drop variables using the ! operator
# Example 8a: Select all variables but 'Sepal.Width'
df.subset(., !Sepal.Width, data = iris)
# Example 8b: Select all variables but 'Sepal.Width' to 'Petal.Width'
df.subset(., !Sepal.Width:Petal.Width, data = iris)
#----------------------------------------------------------------------------
# Combine +, - , !, and : operators
# Example 9: Select variables with prefix 'x' and suffix '3', but exclude
# variables from 'x2' to 'x3'
df.subset(+x, -3, !x2:x3, data = anscombe)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.