With high-dimensional omics features, repeated measure ANOVA leads to longitudinal gene-environment interaction studies that have intra-cluster correlations, outlying observations and structured sparsity arising from the ANOVA design. In this package, we have developed robust sparse Bayesian mixed effect models tailored for the above studies (Fan et al. (2025) <doi:10.1093/jrsssc/qlaf027>). An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in 'C++'. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.
Package details |
|
---|---|
Author | Kun Fan [aut, cre], Cen Wu [aut] |
Maintainer | Kun Fan <kfan@ksu.edu> |
License | GPL-2 |
Version | 0.1.8 |
URL | https://github.com/kunfa/mixedBayes |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.