Nothing
VLMC context tree on 0, 1, 2
cutoff: 3.379 (quantile: 0.03409)
Number of contexts: 3
Maximum context length: 1
Selected by BIC (968.9371) with likelihood function "truncated" (-471.5896)
VLMC context tree on 0, 1, 2
cutoff: 3.379 (quantile: 0.03409)
Number of contexts: 3
Maximum context length: 1
Selected by AIC (938.2772) with likelihood function "truncated" (-471.5896)
VLMC tune results
Best VLMC selected by BIC (968.9371) with likelihood function "truncated" (-471.5896)
VLMC context tree on 0, 1, 2
cutoff: 3.379 (quantile: 0.03409)
Number of contexts: 3
Maximum context length: 1
Pruning results
cutoff alpha depth nb_contexts loglikelihood AIC BIC
1.553652 2.114743e-01 8 56 -406.2783 1036.5565 1506.7862
1.566520 2.087705e-01 8 52 -409.1532 1026.3064 1462.9481
1.595110 2.028862e-01 8 50 -411.2862 1022.5724 1442.4203
1.617948 1.983051e-01 8 49 -412.8997 1021.7994 1433.2504
1.629846 1.959597e-01 8 49 -414.5221 1025.0442 1436.4951
1.638429 1.942851e-01 8 48 -416.1594 1024.3189 1427.3729
1.659070 1.903160e-01 8 46 -418.4485 1020.8971 1407.1571
1.685882 1.852809e-01 8 44 -420.6821 1017.3642 1386.8303
1.727358 1.777533e-01 8 42 -423.6394 1015.2789 1367.9511
1.771785 1.700292e-01 8 39 -426.0461 1008.0922 1335.5735
1.806683 1.641979e-01 8 38 -427.8272 1007.6545 1326.7389
1.833370 1.598738e-01 8 36 -429.7605 1003.5210 1305.8115
1.841439 1.585891e-01 8 35 -431.5947 1003.1893 1297.0828
1.906938 1.485344e-01 7 27 -436.9799 981.9598 1208.6776
1.968433 1.396755e-01 5 23 -439.3010 970.6021 1163.7321
2.079931 1.249389e-01 5 21 -441.9384 967.8768 1144.2129
2.212651 1.094102e-01 5 19 -444.5310 965.0620 1124.6041
2.256204 1.047474e-01 5 17 -446.8942 961.7884 1104.5366
2.303889 9.986969e-02 5 14 -450.8427 957.6853 1075.2427
2.552296 7.790260e-02 4 10 -454.5862 949.1724 1033.1420
2.834259 5.876203e-02 4 8 -457.7708 947.5416 1014.7173
2.880310 5.611737e-02 3 5 -462.5273 945.0546 987.0394
3.378896 3.408506e-02 1 3 -465.8731 943.7462 968.9371
8.715379 1.640434e-04 1 3 -470.0193 952.0386 977.2294
21.194476 6.242464e-10 1 2 -488.8284 985.6569 1002.4508
25.464063 8.731682e-12 0 1 -511.0119 1026.0239 1034.4208
VLMC tune results
Best VLMC selected by AIC (957.1793) with likelihood function "specific" (-471.5896)
VLMC context tree on 0, 1, 2
cutoff: 3.379 (quantile: 0.03409)
Number of contexts: 3
Maximum context length: 1
Pruning results
cutoff alpha depth nb_contexts loglikelihood AIC BIC
1.000000 3.678794e-01 10 112 -352.0230 1172.0461 2158.2644
1.015516 3.622156e-01 10 111 -353.0325 1170.0649 2147.8540
1.027283 3.579784e-01 10 107 -356.9642 1161.9283 2106.0005
1.035378 3.550922e-01 10 104 -358.8625 1153.7251 2072.5096
1.039644 3.535805e-01 10 103 -359.9003 1151.8007 2062.1560
1.072543 3.421375e-01 10 102 -360.9418 1149.8836 2051.8098
1.115718 3.276801e-01 10 102 -362.0464 1152.0927 2054.0188
1.133206 3.219993e-01 10 100 -363.4503 1146.9007 2031.9684
1.175289 3.087298e-01 10 96 -367.3507 1138.7014 1990.0522
1.214332 2.969084e-01 10 95 -368.5630 1137.1259 1980.0475
1.227189 2.931154e-01 10 89 -374.3681 1124.7362 1917.0826
1.247246 2.872949e-01 10 87 -376.2179 1120.4357 1895.9236
1.319793 2.671906e-01 10 86 -377.4743 1118.9487 1886.0074
1.392476 2.484592e-01 8 66 -392.2825 1064.5651 1654.6102
1.402794 2.459090e-01 8 66 -393.6812 1067.3624 1657.4076
1.421783 2.412833e-01 8 65 -395.6243 1067.2486 1648.8646
1.437610 2.374947e-01 8 64 -397.0611 1066.1223 1639.3090
1.445170 2.357060e-01 8 60 -398.9878 1053.9756 1593.4454
1.477267 2.282607e-01 8 59 -400.5155 1053.0310 1584.0717
1.517674 2.192213e-01 8 58 -402.0185 1052.0371 1574.6485
1.538883 2.146207e-01 8 57 -404.7330 1053.4659 1567.6481
1.550745 2.120899e-01 8 56 -406.2783 1052.5565 1558.3095
1.566520 2.087705e-01 8 52 -409.1532 1042.3064 1514.3425
1.595110 2.028862e-01 8 50 -411.2862 1038.5724 1493.7501
1.617948 1.983051e-01 8 49 -412.8997 1037.7994 1484.5479
1.629846 1.959597e-01 8 49 -414.5221 1041.0442 1487.7927
1.638429 1.942851e-01 8 48 -416.1594 1040.3189 1478.6381
1.659070 1.903160e-01 8 46 -418.4485 1036.8971 1458.3579
1.685882 1.852809e-01 8 44 -420.6821 1033.3642 1437.9665
1.727358 1.777533e-01 8 42 -423.6394 1031.2789 1419.0228
1.771785 1.700292e-01 8 39 -426.0461 1024.0922 1386.5485
1.806683 1.641979e-01 8 38 -427.8272 1023.6545 1377.6815
1.833370 1.598738e-01 8 36 -429.7605 1019.5210 1356.6896
1.841439 1.585891e-01 8 35 -431.5947 1019.1893 1347.9287
1.906938 1.485344e-01 7 27 -438.0408 998.0815 1255.1726
1.968433 1.396755e-01 5 23 -442.2061 986.4122 1201.3573
2.079931 1.249389e-01 5 21 -444.8435 983.6870 1181.7736
2.212651 1.094102e-01 5 19 -447.7499 981.4997 1162.7279
2.256204 1.047474e-01 5 17 -450.1131 978.2261 1142.5958
2.303889 9.986969e-02 5 14 -454.0615 974.1231 1113.2051
2.552296 7.790260e-02 4 10 -458.8848 965.7695 1066.9201
2.834259 5.876203e-02 4 8 -461.9353 963.8706 1048.1627
2.880310 5.611737e-02 3 5 -467.2549 960.5098 1015.2997
3.378896 3.408506e-02 1 3 -471.5896 957.1793 986.6815
8.715379 1.640434e-04 1 3 -475.5345 965.0689 994.5712
21.194476 6.242464e-10 1 2 -494.7895 999.5790 1020.6520
25.464063 8.731682e-12 0 1 -519.1294 1042.2587 1050.6880
Fitting a vlmc with max_depth= 2 and cutoff= 1.553652
Max depth reached, increasing it to 4
Max depth reached, increasing it to 8
Max depth reached, increasing it to 16
Initial criterion = Inf
Improving criterion = 1506.786 likelihood = -406.2783 df = 112 nobs = 492
Pruning vlmc with cutoff = 1.56652
Improving criterion = 1462.948 likelihood = -409.1532 df = 104 nobs = 492
Pruning vlmc with cutoff = 1.59511
Improving criterion = 1442.42 likelihood = -411.2862 df = 100 nobs = 492
Pruning vlmc with cutoff = 1.617948
Improving criterion = 1433.25 likelihood = -412.8997 df = 98 nobs = 492
Pruning vlmc with cutoff = 1.629846
Pruning vlmc with cutoff = 1.638429
Improving criterion = 1427.373 likelihood = -416.1594 df = 96 nobs = 492
Pruning vlmc with cutoff = 1.65907
Improving criterion = 1407.157 likelihood = -418.4485 df = 92 nobs = 492
Pruning vlmc with cutoff = 1.685882
Improving criterion = 1386.83 likelihood = -420.6821 df = 88 nobs = 492
Pruning vlmc with cutoff = 1.727358
Improving criterion = 1367.951 likelihood = -423.6394 df = 84 nobs = 492
Pruning vlmc with cutoff = 1.771785
Improving criterion = 1335.574 likelihood = -426.0461 df = 78 nobs = 492
Pruning vlmc with cutoff = 1.806683
Improving criterion = 1326.739 likelihood = -427.8272 df = 76 nobs = 492
Pruning vlmc with cutoff = 1.83337
Improving criterion = 1305.811 likelihood = -429.7605 df = 72 nobs = 492
Pruning vlmc with cutoff = 1.841439
Improving criterion = 1297.083 likelihood = -431.5947 df = 70 nobs = 492
Pruning vlmc with cutoff = 1.906938
Improving criterion = 1208.678 likelihood = -436.9799 df = 54 nobs = 492
Pruning vlmc with cutoff = 1.968433
Improving criterion = 1163.732 likelihood = -439.301 df = 46 nobs = 492
Pruning vlmc with cutoff = 2.079931
Improving criterion = 1144.213 likelihood = -441.9384 df = 42 nobs = 492
Pruning vlmc with cutoff = 2.212651
Improving criterion = 1124.604 likelihood = -444.531 df = 38 nobs = 492
Pruning vlmc with cutoff = 2.256204
Improving criterion = 1104.537 likelihood = -446.8942 df = 34 nobs = 492
Pruning vlmc with cutoff = 2.303889
Improving criterion = 1075.243 likelihood = -450.8427 df = 28 nobs = 492
Pruning vlmc with cutoff = 2.552296
Improving criterion = 1033.142 likelihood = -454.5862 df = 20 nobs = 492
Pruning vlmc with cutoff = 2.834259
Improving criterion = 1014.717 likelihood = -457.7708 df = 16 nobs = 492
Pruning vlmc with cutoff = 2.88031
Improving criterion = 987.0394 likelihood = -462.5273 df = 10 nobs = 492
Pruning vlmc with cutoff = 3.378896
Improving criterion = 968.9371 likelihood = -465.8731 df = 6 nobs = 492
Pruning vlmc with cutoff = 8.715379
Pruning vlmc with cutoff = 21.19448
Pruning vlmc with cutoff = 25.46406
VLMC context tree on 0, 1, 2
cutoff: 3.379 (quantile: 0.03409)
Number of contexts: 3
Maximum context length: 1
Selected by BIC (968.9371) with likelihood function "truncated" (-471.5896)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.