Nothing
#' @title match imputed missing observations to non-missing values
#' @description each imputed numeric missing value is replaced with the nearest
#' non-missing value. this option is particularly
#' recommended when ordinal variables are imputed as a numeric
#' variables.
#' @param imputed numeric vector of imputed missing values
#' @param nonMiss numeric vector of non-missing values
#' @return numeric vector of the imputed values
#' @author E. F. Haghish
#' @keywords Internal
#' @noRd
matching <- function(imputed, nonMiss, md.log) {
if (!is.null(imputed) & !is.null(nonMiss)) {
if (is.numeric(imputed) & is.numeric(nonMiss)) {
# get the unique values
unqImputed <- unique(imputed)
unqNonMiss <- unique(nonMiss[!is.na(nonMiss)])
# avoid imputed values that are already in nnMiss set
unqImputed <- setdiff(unqImputed, unqNonMiss)
# index the unique values and replace them in the vectors
for (i in unqImputed) {
nearest <- which.min(abs(unqNonMiss - i))[1]
index <- which(imputed == i)
imputed[index] <- unqNonMiss[nearest]
}
md.log("matching successul!")
return(imputed)
}
}
}
#nonMiss <- c(1:20, 19:1)
#imputed <- c(11.5, 12.2, 11.51, 14.1, -1, 49, 20, 1, 4)
#ching(imputed, nonMiss, F)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.