View source: R/preprocess_scale.R
| preprocess_scale | R Documentation |
A utility to perform feature scaling on datasets using one of six techniques. Both scaling and inverse scaling are supported, and scalers can be saved and then applied to other datasets.
preprocess_scale(
input,
epsilon = NA,
input_model = NA,
inverse_scaling = FALSE,
max_value = NA,
min_value = NA,
scaler_method = NA,
seed = NA,
verbose = getOption("mlpack.verbose", FALSE)
)
input |
Matrix containing data (numeric matrix). |
epsilon |
regularization Parameter for pcawhitening, or zcawhitening, should be between -1 to 1. Default value "1e-06" (numeric). |
input_model |
Input Scaling model (ScalingModel). |
inverse_scaling |
Inverse Scaling to get original datase. Default value "FALSE" (logical). |
max_value |
Ending value of range for min_max_scaler. Default value "1" (integer). |
min_value |
Starting value of range for min_max_scaler. Default value "0" (integer). |
scaler_method |
method to use for scaling, the default is standard_scaler. Default value "standard_scaler" (character). |
seed |
Random seed (0 for std::time(NULL)). Default value "0" (integer). |
verbose |
Display informational messages and the full list of parameters and timers at the end of execution. Default value "getOption("mlpack.verbose", FALSE)" (logical). |
This utility takes a dataset and performs feature scaling using one of the six scaler methods namely: 'max_abs_scaler', 'mean_normalization', 'min_max_scaler' ,'standard_scaler', 'pca_whitening' and 'zca_whitening'. The function takes a matrix as "input" and a scaling method type which you can specify using "scaler_method" parameter; the default is standard scaler, and outputs a matrix with scaled feature.
The output scaled feature matrix may be saved with the "output" output parameters.
The model to scale features can be saved using "output_model" and later can be loaded back using"input_model".
A list with several components defining the class attributes:
output |
Matrix to save scaled data to (numeric matrix). |
output_model |
Output scaling model (ScalingModel). |
mlpack developers
# So, a simple example where we want to scale the dataset "X" into "X_scaled"
# with standard_scaler as scaler_method, we could run
## Not run:
output <- preprocess_scale(input=X, scaler_method="standard_scaler")
X_scaled <- output$output
## End(Not run)
# A simple example where we want to whiten the dataset "X" into "X_whitened"
# with PCA as whitening_method and use 0.01 as regularization parameter, we
# could run
## Not run:
output <- preprocess_scale(input=X, scaler_method="pca_whitening",
epsilon=0.01)
X_scaled <- output$output
## End(Not run)
# You can also retransform the scaled dataset back using"inverse_scaling". An
# example to rescale : "X_scaled" into "X"using the saved model "input_model"
# is:
## Not run:
output <- preprocess_scale(input=X_scaled, inverse_scaling=TRUE,
input_model=saved)
X <- output$output
## End(Not run)
# Another simple example where we want to scale the dataset "X" into
# "X_scaled" with min_max_scaler as scaler method, where scaling range is 1
# to 3 instead of default 0 to 1. We could run
## Not run:
output <- preprocess_scale(input=X, scaler_method="min_max_scaler",
min_value=1, max_value=3)
X_scaled <- output$output
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.