View source: R/ClassificationViaRegressionWrapper.R
| makeClassificationViaRegressionWrapper | R Documentation |
Builds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).
Probabilities are generated by transforming the predictions with a softmax.
Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).
makeClassificationViaRegressionWrapper(learner, predict.type = "response")
learner |
(Learner | |
predict.type |
( |
Learner.
Other wrapper:
makeBaggingWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeImputeWrapper(),
makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapper(),
makePreprocWrapperCaret(),
makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()
lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.