View source: R/FilterWrapper.R
makeFilterWrapper | R Documentation |
Fuses a base learner with a filter method. Creates a learner object, which can be used like any other learner object. Internally uses filterFeatures before every model fit.
makeFilterWrapper(
learner,
fw.method = "FSelectorRcpp_information.gain",
fw.base.methods = NULL,
fw.perc = NULL,
fw.abs = NULL,
fw.threshold = NULL,
fw.fun = NULL,
fw.fun.args = NULL,
fw.mandatory.feat = NULL,
cache = FALSE,
...
)
learner |
(Learner | |
fw.method |
( |
fw.base.methods |
( |
fw.perc |
( |
fw.abs |
( |
fw.threshold |
( |
fw.fun |
( |
fw.fun.args |
(any) |
fw.mandatory.feat |
(character) |
cache |
( |
... |
(any) |
If ensemble = TRUE
, ensemble feature selection using all methods specified
in fw.method
is performed. At least two methods need to be selected.
After training, the selected features can be retrieved with getFilteredFeatures.
Note that observation weights do not influence the filtering and are simply passed down to the next learner.
Learner.
If cache = TRUE
, the default mlr cache directory is used to cache filter
values. The directory is operating system dependent and can be checked with
getCacheDir()
. Alternatively a custom directory can be passed to store
the cache. The cache can be cleared with deleteCacheDir()
. Caching is
disabled by default. Care should be taken when operating on large clusters
due to possible write conflicts to disk if multiple workers try to write
the same cache at the same time.
Other filter:
filterFeatures()
,
generateFilterValuesData()
,
getFilteredFeatures()
,
listFilterEnsembleMethods()
,
listFilterMethods()
,
makeFilter()
,
makeFilterEnsemble()
,
plotFilterValues()
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapper()
,
makePreprocWrapperCaret()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()
task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.lda")
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeFilterWrapper(lrn, fw.perc = 0.5)
mod = train(lrn, task)
print(getFilteredFeatures(mod))
# now nested resampling, where we extract the features that the filter method selected
r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)
})
print(r$extract)
# usage of an ensemble filter
lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "E-Borda",
fw.base.methods = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain"),
fw.perc = 0.5)
r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)
})
print(r$extract)
# usage of a custom thresholding function
biggest_gap = function(values, diff) {
gap_size = 0
gap_location = 0
for (i in (diff + 1):length(values)) {
gap = values[[i - diff]] - values[[i]]
if (gap > gap_size) {
gap_size = gap
gap_location = i - 1
}
}
return(gap_location)
}
lrn = makeLearner("classif.lda")
lrn = makeFilterWrapper(lrn, fw.method = "FSelectorRcpp_information.gain",
fw.fun = biggest_gap, fw.fun.args = list("diff" = 1))
r = resample(lrn, task, outer, extract = function(model) {
getFilteredFeatures(model)
})
print(r$extract)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.