View source: R/ImputeWrapper.R
makeImputeWrapper | R Documentation |
Fuses a base learner with an imputation method. Creates a learner object, which can be used like any other learner object. Internally uses impute before training the learner and reimpute before predicting.
makeImputeWrapper(
learner,
classes = list(),
cols = list(),
dummy.classes = character(0L),
dummy.cols = character(0L),
dummy.type = "factor",
force.dummies = FALSE,
impute.new.levels = TRUE,
recode.factor.levels = TRUE
)
learner |
(Learner | |
classes |
(named list) |
cols |
(named list) |
dummy.classes |
(character) |
dummy.cols |
(character) |
dummy.type |
( |
force.dummies |
( |
impute.new.levels |
( |
recode.factor.levels |
( |
Learner.
Other impute:
imputations
,
impute()
,
makeImputeMethod()
,
reimpute()
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelNestedStackingWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapper()
,
makePreprocWrapperCaret()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.