Nothing
A connector between mlr3 and batchtools. This allows to run large-scale benchmark experiments on scheduled high-performance computing clusters.
The package comes with two core functions for switching between mlr3
and batchtools
to perform a benchmark:
design
object (as required for mlr3
’s
benchmark()
function), instead of benchmark()
call batchmark()
which populates an ExperimentRegistry
for the computational jobs of
the benchmark. You are now in the world of batchtools
where you can
selectively submit jobs with different resources, monitor the progress
or resubmit as needed.reduceResultsBatchmark()
to return to mlr3
. The resulting object
is a regular BenchmarkResult
.library("mlr3")
library("batchtools")
library("mlr3batchmark")
tasks = tsks(c("iris", "sonar"))
learners = lrns(c("classif.featureless", "classif.rpart"))
resamplings = rsmp("cv", folds = 3)
design = benchmark_grid(
tasks = tasks,
learners = learners,
resamplings = resamplings
)
reg = makeExperimentRegistry(NA)
## No readable configuration file found
## Created registry in '/tmp/RtmpbcuMc4/registry27b8961304f5da' using cluster functions 'Interactive'
ids = batchmark(design, reg = reg)
## Adding algorithm 'run_learner'
## Adding problem 'abc694dd29a7a8ce'
## Exporting new objects: '2da7eeb80b94fc3b' ...
## Exporting new objects: 'c905990877a775af' ...
## Exporting new objects: '3acc41a799a260d8' ...
## Exporting new objects: 'ecf8ee265ec56766' ...
## Overwriting previously exported object: 'ecf8ee265ec56766'
## Adding 6 experiments ('abc694dd29a7a8ce'[1] x 'run_learner'[2] x repls[3]) ...
## Adding problem 'f9791e97f9813150'
## Exporting new objects: '62ac3bb85aabfbaf' ...
## Adding 6 experiments ('f9791e97f9813150'[1] x 'run_learner'[2] x repls[3]) ...
submitJobs()
## Submitting 12 jobs in 12 chunks using cluster functions 'Interactive' ...
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
## Error in workhorse(iteration = job$repl, task = data, learner = learner, :
## unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
getStatus()
## Status for 12 jobs at 2025-05-26 09:23:22:
## Submitted : 12 (100.0%)
## -- Queued : 0 ( 0.0%)
## -- Started : 12 (100.0%)
## ---- Running : 0 ( 0.0%)
## ---- Done : 0 ( 0.0%)
## ---- Error : 12 (100.0%)
## ---- Expired : 0 ( 0.0%)
reduceResultsBatchmark()
##
## ── <BenchmarkResult> of 0 rows with 0 resampling run ───────────────────────────
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.