| mlr_learners.tab_resnet | R Documentation | 
Tabular resnet.
This Learner can be instantiated using the sugar function lrn():
lrn("classif.tab_resnet", ...)
lrn("regr.tab_resnet", ...)
Supported task types: 'classif', 'regr'
Predict Types:
classif: 'response', 'prob'
regr: 'response'
Feature Types: “integer”, “numeric”, “lazy_tensor”
Parameters from LearnerTorch, as well as:
n_blocks :: integer(1)
The number of blocks.
d_block :: integer(1)
The input and output dimension of a block.
d_hidden :: integer(1)
The latent dimension of a block.
d_hidden_multiplier :: numeric(1)
Alternative way to specify the latent dimension as d_block * d_hidden_multiplier.
dropout1 :: numeric(1)
First dropout ratio.
dropout2 :: numeric(1)
Second dropout ratio.
shape :: integer() or NULL
Shape of the input tensor. Only needs to be provided if the input is a lazy tensor with
unknown shape.
mlr3::Learner -> mlr3torch::LearnerTorch -> LearnerTorchTabResNet
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3torch::LearnerTorch$dataset()mlr3torch::LearnerTorch$format()mlr3torch::LearnerTorch$marshal()mlr3torch::LearnerTorch$print()mlr3torch::LearnerTorch$unmarshal()new()Creates a new instance of this R6 class.
LearnerTorchTabResNet$new( task_type, optimizer = NULL, loss = NULL, callbacks = list() )
task_type(character(1))
The task type, either "classif" or "regr".
optimizer(TorchOptimizer)
The optimizer to use for training.
Per default, adam is used.
loss(TorchLoss)
The loss used to train the network.
Per default, mse is used for regression and cross_entropy for classification.
callbacks(list() of TorchCallbacks)
The callbacks. Must have unique ids.
clone()The objects of this class are cloneable with this method.
LearnerTorchTabResNet$clone(deep = FALSE)
deepWhether to make a deep clone.
Gorishniy Y, Rubachev I, Khrulkov V, Babenko A (2021). “Revisiting Deep Learning for Tabular Data.” arXiv, 2106.11959.
Other Learner: 
mlr_learners.ft_transformer,
mlr_learners.mlp,
mlr_learners.module,
mlr_learners.torch_featureless,
mlr_learners_torch,
mlr_learners_torch_image,
mlr_learners_torch_model
# Define the Learner and set parameter values
learner = lrn("classif.tab_resnet")
learner$param_set$set_values(
  epochs = 1, batch_size = 16, device = "cpu",
  n_blocks = 2, d_block = 10, d_hidden = 20, dropout1 = 0.3, dropout2 = 0.3
)
# Define a Task
task = tsk("iris")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.