View source: R/CallbackBatchTuning.R
| callback_batch_tuning | R Documentation |
Function to create a CallbackBatchTuning.
Predefined callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk().
Tuning callbacks can be called from different stages of the tuning process.
The stages are prefixed with on_*.
Start Tuning
- on_optimization_begin
Start Tuner Batch
- on_optimizer_before_eval
Start Evaluation
- on_eval_after_design
Start Resampling Iteration
- on_resample_begin
- on_resample_before_train
- on_resample_before_predict
- on_resample_end
End Resampling Iteration
- on_eval_after_benchmark
- on_eval_before_archive
End Evaluation
- on_optimizer_after_eval
End Tuner Batch
- on_tuning_result_begin
- on_result_begin
- on_result_end
- on_optimization_end
End Tuning
See also the section on parameters for more information on the stages. A tuning callback works with ContextBatchTuning and mlr3::ContextResample.
callback_batch_tuning(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_eval_after_design = NULL,
on_resample_begin = NULL,
on_resample_before_train = NULL,
on_resample_before_predict = NULL,
on_resample_end = NULL,
on_eval_after_benchmark = NULL,
on_eval_before_archive = NULL,
on_optimizer_after_eval = NULL,
on_tuning_result_begin = NULL,
on_result_begin = NULL,
on_result_end = NULL,
on_result = NULL,
on_optimization_end = NULL
)
id |
( |
label |
( |
man |
( |
on_optimization_begin |
( |
on_optimizer_before_eval |
( |
on_eval_after_design |
( |
on_resample_begin |
( |
on_resample_before_train |
( |
on_resample_before_predict |
( |
on_resample_end |
( |
on_eval_after_benchmark |
( |
on_eval_before_archive |
( |
on_optimizer_after_eval |
( |
on_tuning_result_begin |
( |
on_result_begin |
( |
on_result_end |
( |
on_result |
( |
on_optimization_end |
( |
When implementing a callback, each function must have two arguments named callback and context.
A callback can write data to the state ($state), e.g. settings that affect the callback itself.
Tuning callbacks access ContextBatchTuning.
# write archive to disk
callback_batch_tuning("mlr3tuning.backup",
on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.