mlr_tuning_spaces_rbv1 | R Documentation |
Tuning spaces from the Kuehn (2018) article.
alpha [0, 1]
s [1e-04, 1000]
Logscale
k [1, 30]
num.trees [1, 2000]
replace [TRUE,FALSE]
sample.fraction [0.1, 1]
mtry.ratio [0, 1]
respect.unordered.factors [“ignore”, “order”]
min.node.size [1, 100]
The tuning space of the ranger learner is slightly different from the original paper.
The hyperparameter mtry.power
is replaced by mtry.ratio
and min.node.size
is explored in a range from 1 to 100.
cp [0, 1]
maxdepth [1, 30]
minbucket [1, 60]
minsplit [1, 60]
kernel [“linear”, “polynomial”, “radial”]
cost [1e-04, 1000]
Logscale
gamma [1e-04, 1000]
Logscale
degree [2, 5]
nrounds [1, 5000]
eta [1e-04, 1]
Logscale
subsample [0, 1]
booster [“gblinear”, “gbtree”, “dart”]
max_depth [1, 15]
min_child_weight [1, 100]
Logscale
colsample_bytree [0, 1]
colsample_bylevel [0, 1]
lambda [1e-04, 1000]
Logscale
alpha [1e-04, 1000]
Logscale
Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.