mmcif_logLik | R Documentation |
Evaluates the log composite likelihood and its gradient using adaptive Gauss-Hermite quadrature.
mmcif_logLik( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE ) mmcif_logLik_grad( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE )
object |
an object from |
par |
numeric vector with parameters. This is either using a log Cholesky decomposition for the covariance matrix or the covariance matrix. |
ghq_data |
the Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
n_threads |
the number of threads to use. |
is_log_chol |
logical for whether a log Cholesky decomposition is used for the covariance matrix or the full covariance matrix. |
A numeric vector with either the log composite likelihood or the gradient of it.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # compute the log composite likelihood and the gradient at the starting # values mmcif_logLik( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() mmcif_logLik_grad( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.