View source: R/SingleTable-methods-exported.R
SingleTable.modelFit | R Documentation |
This function conducts exact posterior inference based on the object created by SingleTable.create
.
SingleTable.modelFit(
single_table_Obj,
method = "exact",
verbose = TRUE,
control = list()
)
single_table_Obj |
The object created by |
method |
a character string specifying the method. Options are |
verbose |
a logical value; if TRUE(default), the detailed summary messages are displayed, else the messages are omitted. |
control |
a list can be specified to control the fitting process. Options are stated in details. |
control list can be specified to control the fitting process:
n_samples
: number of posterior samples; Defualt is 5000.
mcmc_initial
: initial values for (p1, p2) in MCMC; Default is c(0.5, 0.5).
upper_bound
: upper bound for the measure. Default is 100.
lower_bound
: lower bound for the measure. For RD, default is -1. For RR/OR, defualt is 0.
num_grids
: number of grids to calculate density; The defualt is 20498.
An object of singletable
class is returned including the following non-null values:
measure |
the value of |
model |
the value of |
data |
a numeric vector of input data with components: |
parameter |
a numeric vector of the hyperparameters: |
method |
the value of |
sample |
a list of samples for the posterior and prior distributions. |
density |
a list of the density of the posterior and prior distributions. |
SingleTable.summary
, SingleTable.plot
.
## Assume we have a 2x2 table:{{40,56},{49,60}} and set prior parameters as a1=b1=a2=b2=rho=0.5.
library(mmeta)
library(ggplot2)
# ########################## If sampling method is used ############################
## Create object \code{single_table_obj_samling}
single_table_obj_samling <- SingleTable.create(a1=0.5,b1=0.5,
a2=0.5,b2=0.5,rho=0.5, y1=40, n1=96, y2=49, n2=109,model="Sarmanov",measure="OR")
## model fit
single_table_obj_samling <- SingleTable.modelFit(single_table_obj_samling,
method = 'sampling')
## Control list option examples
## set number of posterior samples as 3000 (default is 5000)
single_table_obj_samling <- SingleTable.modelFit(single_table_obj_samling,
method = 'sampling', control = list(n_sample = 3000))
## set initial values for MCMC is c(0.2, 0,4) (default is c(0.5,0.5))
single_table_obj_samling <- SingleTable.modelFit(single_table_obj_samling,
method = 'sampling', control = list(mcmc_initial = c(0.2,0.4)))
## set upper bound for the measure is 20( default is 100)
single_table_obj_samling <- SingleTable.modelFit(single_table_obj_samling,
method = 'sampling', control = list(upper_bound = 20))
# ########################### If exact method is used ##############################
## Create object \code{single_table_obj_exact}
single_table_obj_exact <- SingleTable.create(a1=0.5, b1=0.5, a2=0.5, b2=0.5,
rho=0.5, y1=40, n1=96, y2=49, n2=109, model="Sarmanov",measure="OR")
## model fit
single_table_obj_exact <- SingleTable.modelFit(single_table_obj_exact, method = 'exact')
## The options of \code{control} list specifying the fitting process are similar
## to the codes shown above.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.