View source: R/replext_funcs.R
| generate_datasets_reg | R Documentation | 
This function generates a specified number of datasets for regression analysis
simulations. Each dataset is generated using the sim_reg function, based on
given parameters like sample size, number of predictors, effect size, and
correlation coefficient.
generate_datasets_reg(S = 20000, n, p, f2, rho, beta = 0.1)
S | 
 The number of datasets to generate, default is 20000.  | 
n | 
 The number of observations in each dataset.  | 
p | 
 The number of predictors in the regression model for each dataset.  | 
f2 | 
 The effect size for each dataset, defined as (f^2 = R^2 / (1 - R^2)).  | 
rho | 
 The correlation coefficient between predictors in each dataset.  | 
beta | 
 The regression coefficients for the predictors in each dataset, either as a single value or a vector of length (p).  | 
The function uses sim_reg to simulate individual datasets, which
are then combined into a list. Each dataset is a data frame with named
columns for the response variable and predictors.
A list of data frames, each representing a simulated dataset for regression analysis. Each data frame contains columns for the response variable 'y' and predictors 'x1', 'x2', ..., 'xp'.
Vanbrabant, Leonard; Van De Schoot, Rens; Rosseel, Yves (2015). Constrained statistical inference: sample-size tables for ANOVA and regression. Frontiers in Psychology, 5. DOI:10.3389/fpsyg.2014.01565. URL: https://www.frontiersin.org/articles/10.3389/fpsyg.2014.01565
datasets <- generate_datasets_reg(S = 2, n = 50, p = 3, f2 = 0.10, rho = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.