| locglmfit | R Documentation | 
Local polynomial estimator for the psychometric function and eta function (psychometric function transformed by link) for binomial data; also returns the hat matrix H.
locglmfit( xfit, r, m, x, h, returnH = FALSE, link = "logit",
               guessing = 0, lapsing = 0, K = 2, p = 1,
               ker = "dnorm", maxiter = 50, tol = 1e-6 )
| xfit | points at which to calculate the estimate pfit | 
| r | number of successes at points x | 
| m | number of trials at points x | 
| x | stimulus levels | 
| h | bandwidth(s) | 
| returnH | (optional) logical, if TRUE then hat matrix is calculated; default is FALSE | 
| link | (optional) name of the link function; default is 'logit' | 
| guessing | (optional) guessing rate; default is 0 | 
| lapsing | (optional) lapsing rate; default is 0 | 
| K | (optional) power parameter for Weibull and reverse Weibull link; default is 2 | 
| p | (optional) degree of the polynomial; default is 1 | 
| ker | (optional) kernel function for weights; default is 'dnorm' | 
| maxiter | (optional) maximum number of iterations in Fisher scoring; default is 50 | 
| tol | (optional) tolerance level at which to stop Fisher scoring; default is 1e-6 | 
pfit        value of the local polynomial estimate at points xfit
etafit    estimate of eta (link of pfit)
H              hat matrix (OPTIONAL)
data("Miranda_Henson")
x = Miranda_Henson$x
r = Miranda_Henson$r
m = Miranda_Henson$m
numxfit <- 199; # Number of new points to be generated minus 1
xfit <- (max(x)-min(x)) * (0:numxfit) / numxfit + min(x)
# Find a plug-in bandwidth
bwd <- bandwidth_plugin( r, m, x)
pfit <- locglmfit( xfit, r, m, x, bwd )$pfit
# Plot the fitted curve
plot( x, r / m, xlim = c( 0.1, 1.302 ), ylim = c( 0.0165, 0.965 ), type = "p", pch="*" )
lines(xfit, pfit )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.