modeltools: Tools and Classes for Statistical Models
Version 0.2-21

A collection of tools to deal with statistical models. The functionality is experimental and the user interface is likely to change in the future. The documentation is rather terse, but packages `coin' and `party' have some working examples. However, if you find the implemented ideas interesting we would be very interested in a discussion of this proposal. Contributions are more than welcome!

AuthorTorsten Hothorn, Friedrich Leisch, Achim Zeileis
Date of publication2013-09-02 14:29:21
MaintainerTorsten Hothorn <Torsten.Hothorn@R-project.org>
LicenseGPL-2
Version0.2-21
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("modeltools")

Popular man pages

FormulaParts-class: Class "FormulaParts"
info: Get Information on Fitted Objects
ModelEnv-class: Class "ModelEnv"
ModelEnvFormula-class: Class "ModelEnvFormula"
ModelEnvMatrix: Generate a model environment from design and response matrix
Predict: Model Predictions
StatModel-class: Class "StatModel"
See all...

All man pages Function index File listing

Man pages

FormulaParts-class: Class "FormulaParts"
Generics: Generic Utility Functions
info: Get Information on Fitted Objects
MEapply: Apply functions to Data in Object of Class "ModelEnv"
ModelEnv-class: Class "ModelEnv"
ModelEnvFormula: Generate a model environment from a classical formula based...
ModelEnvFormula-class: Class "ModelEnvFormula"
ModelEnvMatrix: Generate a model environment from design and response matrix
Predict: Model Predictions
StatModelCapabilities-class: Class "StatModelCapabilities"
StatModel-class: Class "StatModel"

Functions

FormulaParts-class Man page
ICL Man page
KLdiv Man page
Lapply Man page
MEapply Man page Source code
MEapply,ModelEnv-method Man page
ModelEnv-class Man page
ModelEnvFormula Man page Source code
ModelEnvFormula-class Man page
ModelEnvMatrix Man page Source code
ParseFormula Man page Source code
Predict Man page Source code
StatModel-class Man page
StatModelCapabilities-class Man page
checkData Source code
clone Man page
clone,ModelEnv-method Man page
clusters Man page
colnamesnum Source code
complete.cases.ModelEnv Source code
createColnames Source code
dimension Man page
dimension,ModelEnv,character-method Man page
dpp Man page
dpp,StatModel-method Man page
empty Man page
empty,ModelEnv-method Man page
fit Man page
fit,StatModel,ModelEnv-method Man page
fitted.glinearModel Man page Source code
fitted.linearModel Man page Source code
fitted.survReg Man page Source code
getModel Man page
glinearModel Man page
has Man page
has,ModelEnv,character-method Man page
info Man page
info,ANY,missing-method Man page
infoCheck Man page Source code
initialize,ModelEnv-method Man page
linearModel Man page
lmfit Source code
logLik.survReg Man page Source code
model.matrix.glinearModel Man page Source code
model.matrix.linearModel Man page Source code
model.matrix.survReg Source code
na.fail Man page
na.fail,ModelEnv-method Man page
na.omit Man page
na.omit,ModelEnv-method Man page
na.pass Man page
na.pass,ModelEnv-method Man page
parameters Man page
posterior Man page
predict.glinearModel Man page Source code
predict.linearModel Man page Source code
print.glinearModel Man page Source code
print.linearModel Man page Source code
print.survReg Man page Source code
prior Man page
refit Man page
relabel Man page
show,ModelEnv-method Man page
subset Man page
subset,ModelEnv-method Man page
survReg Man page
weights.linearModel Man page Source code
weights.survReg Man page Source code

Files

inst
inst/NEWS
tests
tests/regtest.R
NAMESPACE
NEWS
R
R/Utilities.R
R/Data.R
R/linearModel.R
R/glinearModel.R
R/NAhandling.R
R/survReg.R
R/Methods.R
R/Generics.R
R/Classes.R
MD5
DESCRIPTION
man
man/Predict.Rd
man/FormulaParts-class.Rd
man/ModelEnvFormula.Rd
man/StatModelCapabilities-class.Rd
man/StatModel-class.Rd
man/MEapply.Rd
man/ModelEnvMatrix.Rd
man/info.Rd
man/Generics.Rd
man/ModelEnv-class.Rd
man/ModelEnvFormula-class.Rd
cleanup
modeltools documentation built on May 19, 2017, 6:46 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.