ER | R Documentation |
The ER
function is an implementation of the ER-algorithm
of Little and Smith (1987).
ER(
data,
weights,
alpha = 0.01,
psi.par = c(2, 1.25),
em.steps = 100,
steps.output = FALSE,
Estep.output = FALSE,
tolerance = 1e-06
)
data |
a data frame or matrix with the data. |
weights |
sampling weights. |
alpha |
probability for the quantile of the cut-off. |
psi.par |
further parameters passed to the psi-function. |
em.steps |
number of iteration steps of the EM-algorithm. |
steps.output |
if |
Estep.output |
if |
tolerance |
convergence criterion (relative change). |
The M-step of the EM-algorithm uses a one-step M-estimator.
sample.size
Number of observations
number.of.variables
Number of variables
significance.level
alpha
computation.time
Elapsed computation time
good.data
Indices of the data in the final good subset
outliers
Indices of the outliers
center
Final estimate of the center
scatter
Final estimate of the covariance matrix
dist
Final Mahalanobis distances
rob.weights
Robustness weights in the final EM step
Beat Hulliger
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
BEM
data(bushfirem, bushfire.weights)
det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05,
steps.output = TRUE, em.steps = 100, tol = 2e-6)
PlotMD(det.res$dist, ncol(bushfirem))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.