| ER | R Documentation |
The ER function is an implementation of the ER-algorithm
of Little and Smith (1987).
ER(
data,
weights,
alpha = 0.01,
psi.par = c(2, 1.25),
em.steps = 100,
steps.output = FALSE,
Estep.output = FALSE,
tolerance = 1e-06
)
data |
a data frame or matrix with the data. |
weights |
sampling weights. |
alpha |
probability for the quantile of the cut-off. |
psi.par |
further parameters passed to the psi-function. |
em.steps |
number of iteration steps of the EM-algorithm. |
steps.output |
if |
Estep.output |
if |
tolerance |
convergence criterion (relative change). |
The M-step of the EM-algorithm uses a one-step M-estimator.
sample.sizeNumber of observations
number.of.variablesNumber of variables
significance.levelalpha
computation.timeElapsed computation time
good.dataIndices of the data in the final good subset
outliersIndices of the outliers
centerFinal estimate of the center
scatterFinal estimate of the covariance matrix
distFinal Mahalanobis distances
rob.weightsRobustness weights in the final EM step
Beat Hulliger
Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data. Journal of the American Statistical Association, 82, 58-68.
BEM
data(bushfirem, bushfire.weights)
det.res <- ER(bushfirem, weights = bushfire.weights, alpha = 0.05,
steps.output = TRUE, em.steps = 100, tol = 2e-6)
PlotMD(det.res$dist, ncol(bushfirem))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.