Description Usage Arguments Value See Also Examples
View source: R/plotFunctions.R
Core function for plotting various types of network models. Accessible
through the plot()
S3 generic function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | plotNet(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'ggm'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'SURnet'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'mlGVAR'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'lmerVAR'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'ggmSim'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'mlGVARsim'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
## S3 method for class 'GVARsim'
plot(
x,
which.net = "temporal",
threshold = FALSE,
layout = "spring",
predict = FALSE,
mnet = FALSE,
names = TRUE,
nodewise = FALSE,
scale = FALSE,
lag = NULL,
con = "R2",
cat = "nCC",
covNet = FALSE,
plot = TRUE,
elabs = FALSE,
elsize = 1,
rule = "OR",
binarize = FALSE,
mlty = TRUE,
mselect = NULL,
...
)
|
x |
Output from any of the |
which.net |
When multiple networks exist for a single object, this
allows the user to indicate which network to plot. For a GGM, all values of
this argument return the same adjacency matrix. For a SUR network,
|
threshold |
A numeric or logical value to set a p-value threshold.
|
layout |
Character. Corresponds to the |
predict |
If |
mnet |
Logical. If |
names |
If |
nodewise |
Only applies to GGMs. If |
scale |
Logical. Only applies when |
lag |
This argument will be removed. The function will automatically detect whether the network is based on time-lagged data. |
con |
Character string indicating which type of prediction error to plot
for continuous variables, if |
cat |
Character string indicating which type of prediction error to plot
for categorical variables, if |
covNet |
Logical. Only applies when a covariate is modeled. Allows the covariate to be plotted as a separate square "node". |
plot |
Logical. If |
elabs |
Logical. If |
elsize |
numeric |
rule |
Only applies to GGMs (including between-subjects networks) when a
threshold is supplied. The |
binarize |
Logical. If |
mlty |
Logical. If |
mselect |
If the model contains more than one moderator, input the
character string naming which moderator you would like the plot to reflect.
Only affects which lines are dashed or solid. Not compatible with the
|
... |
Additional arguments. |
Displays a network plot, or returns a qgraph
object if
plot = FALSE
.
fitNetwork, predictNet, mlGVAR,
lmerVAR, simNet, mlGVARsim, plotCoefs,
intsPlot, resample
1 2 3 4 5 6 7 8 9 | fit1 <- fitNetwork(ggmDat)
plot(fit1)
plotNet(fit1) # This and the command above produce the same result
fit2 <- fitNetwork(gvarDat, moderators = 'M', lags = 1)
plot(fit2, 'pdc') # Partial Directed Correlations
plot(fit2, 'pcc') # Partial Contemporaneous Correlations
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.