| parameter_estimates | R Documentation |
Extract parameterEstimates from an estimated model
parameter_estimates(object, ...)
## S3 method for class 'lavaan'
parameter_estimates(
object,
colon.pi = NULL,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
label.renamed.prod = NULL,
is.public = NULL,
...
)
## S3 method for class 'modsem_da'
parameter_estimates(
object,
high.order.as.measr = TRUE,
is.public = TRUE,
rm.tmp.ov = is.public,
label.renamed.prod = NULL,
...
)
## S3 method for class 'modsem_mplus'
parameter_estimates(
object,
colon.pi = NULL,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
label.renamed.prod = NULL,
is.public = NULL,
...
)
## S3 method for class 'modsem_pi'
parameter_estimates(
object,
colon.pi = FALSE,
label.renamed.prod = FALSE,
high.order.as.measr = NULL,
rm.tmp.ov = NULL,
is.public = NULL,
...
)
object |
An object of class |
... |
Additional arguments passed to other functions |
colon.pi |
Should colons ( |
high.order.as.measr |
Should higher order measurement model be
denoted with the |
rm.tmp.ov |
Should temporary (hidden) variables be removed? |
label.renamed.prod |
Should renamed product terms keep their old (implicit) labels? |
is.public |
Should public version of parameter table be returned?
If |
parameter_estimates(lavaan): Get parameter estimates of a lavaan object
parameter_estimates(modsem_da): Get parameter estimates of a modsem_da object
parameter_estimates(modsem_mplus): Get parameter estimates of a modsem_mplus object
parameter_estimates(modsem_pi): Get parameter estimates of a modsem_pi object
m1 <- '
# Outer Model
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
# Inner Model
Y ~ X + Z + X:Z
'
# Double centering approach
est_dca <- modsem(m1, oneInt)
pars <- parameter_estimates(est_dca) # no correction
# Pretty summary
summarize_partable(pars)
# Only print the data.frame
pars
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.