symdevplot | R Documentation |
The symmetric deviation function is the probability for a given target in the objective space to belong to the symmetric difference between the Vorob'ev expectation and a realization of the (random) attained set.
symdevplot(
x,
sets,
VE,
threshold,
nlevels = 11,
ve.col = "blue",
xlim = NULL,
ylim = NULL,
legend.pos = "topright",
main = "Symmetric deviation function",
col.fun = function(n) gray(seq(0, 0.9, length.out = n)^2)
)
x |
|
sets |
|
VE , threshold |
Vorob'ev expectation and threshold, e.g., as returned
by |
nlevels |
( |
ve.col |
Plotting parameters for the Vorob'ev expectation. |
xlim , ylim , main |
Graphical parameters, see
|
legend.pos |
The position of the legend, see
|
col.fun |
Function that creates a vector of |
No return value, called for side effects
Mickael Binois
BinGinRou2015gauparmoocore
C. Chevalier (2013), Fast uncertainty reduction strategies relying on Gaussian process models, University of Bern, PhD thesis.
\insertRefMolchanov2005theorymoocore
moocore::vorobT()
moocore::vorobDev()
eafplot()
data(CPFs, package = "moocore")
res <- moocore::vorobT(CPFs, reference = c(2, 200))
print(res$threshold)
## Display Vorob'ev expectation and attainment function
# First style
eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 25, 50, 75, 100, res$threshold),
main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"),
list(a = formatC(res$threshold, digits = 2, format = "f"))))
# Second style
eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 20, 40, 60, 80, 100),
col = gray(seq(0.8, 0.1, length.out = 6)^0.5), type = "area",
legend.pos = "bottomleft", extra.points = res$VE, extra.col = "cyan",
extra.legend = "VE", extra.lty = "solid", extra.pch = NA, extra.lwd = 2,
main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"),
list(a = formatC(res$threshold, digits = 2, format = "f"))))
# Vorob'ev deviation
VD <- moocore::vorobDev(CPFs, reference = c(2, 200), VE = res$VE)
# Display the symmetric deviation function.
symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11)
# Levels are adjusted automatically if too large.
symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 200, legend.pos = "none")
# Use a different palette.
symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11, col.fun = heat.colors)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.