Description Usage Arguments Value Author(s) References See Also
Multi-objective optimization involves maximizing or minimizing multiple interacting and/or conflicting objective functions subject to a set of contraints. MOPSOCD is a multi-objective optimization solver based on particle swarm optimization that uses crowding distance computation to ensure an even spread of non-dominated solutions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mopsocd(fn,
gn,
varcnt,
fncnt,
lowerbound,
upperbound,
opt,
popsize,
maxgen,
archivesize,
verbosity,
pMut,
w,
c1,
c2)
|
fn |
Objective functions to be optimized |
gn |
Constraints (optional) |
varcnt |
Number of Parameters |
fncnt |
Number of Objectives |
lowerbound |
Parameter Lower Bound |
upperbound |
Parameter Upper Bound |
opt |
Optimization type (0: minimization; 1: maximization) |
popsize |
Population Size (default: 100) |
maxgen |
Number of Generations (default: 100) |
archivesize |
Maximum size of archive containing non-dominated points (default: 250) |
verbosity |
Verbosity Levels : 0,1,2,3 (default: 1) |
pMut |
Mutation Probability (default: 0.5) |
w |
Inertia Weight (default: 0.4) |
c1 |
Acceleration Coefficient 1 (default: 1.0) |
c2 |
Acceleration Coefficient 2 (default: 1.0) |
The returned value is a pareto object with the following fields:
numsols |
Number of Solutions Found |
paramvalues |
Estimated Parameter Values |
objfnvalues |
Values of the Objectives |
Pros Naval
C. R. Raquel and P.C. Naval, "An Effective use of Crowding Distance in Multiobjective Particle Swarm Optimization", Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, D.C., June 25-29, 2005.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.