plot_histograms.similarity | R Documentation |
These functions plot histograms of a set of similarity measures obtained through perturbation methods.
In particular plot_hist.similarity
plots a single histogram referred to a specific number of clusters,
while plot_multiple.hist.similarity
plots multiple histograms referred to different numbers of clusters
(one for each number of clusters, i.e. one for each row of the matrix S
of similarity values).
plot_hist.similarity(sim, nbins = 25)
plot_multiple.hist.similarity(S, n.col = 3, labels = NULL, nbins = 25)
sim |
vector of similarity values |
nbins |
number of the bins of the histogram |
S |
Matrix of similarity values, rows correspond to diferent number of clusters |
n.col |
number of columns in the grid of the histograms (default = 3) |
labels |
label of the histograms. If NULL (default) the number of clusters from 2 to nrow(S)+1 are used |
No return value, the function is called for its side-effect of drawing a plot on the current graphics device.
Giorgio Valentini valentini@di.unimi.it
plot_cumulative
, plot_cumulative.multiple
library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,
alg.clust.sim=Kmeans.sim.resampling);
# plot of the histograms of similarity measures for clusterings from 2 to 10 clusters:
plot_multiple.hist.similarity (Sr.kmeans.sample6, n.col=3, labels=NULL, nbins=25);
# the same as postrcript file
postscript(file="histograms.eps", horizontal=FALSE, onefile = FALSE);
plot_multiple.hist.similarity (Sr.kmeans.sample6, n.col=3, labels=NULL, nbins=25);
dev.off();
unlink("histograms.eps");
# plot of a single histogram
plot_hist.similarity(Sr.kmeans.sample6[2,], nbins = 25)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.