mosquito

#install.packages("pracma")
#install.packages("matlib")
#install.packages("NlcOptim")
#library("pracma")
#library("matlib")


#sample data
#mosquito count from data
y_in = c(15, 40, 45, 88, 99, 145, 111, 132, 177, 97, 94, 145, 123, 111,
    125, 115, 155, 160, 143, 132, 126, 125, 105, 98, 87, 54, 55, 8)

#day of year in which measurments making up yin occur, Jan 1st = day 1
t_in_user = c(93, 100, 107, 114, 121, 128, 135, 142, 149, 163, 170, 177,
    184, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261,
    267, 274, 281, 288)


if (length(y_in) != length(t_in_user)){
  stop("input data mismatch")
}
# User inputs (aside from trap data inputs)

#mu = natural mosquito death rate 
mu = 1/14 #program should set mu = 1 / tau_mosq, where tau_mosq is the mosquito lifetime input by user in units of days 
          # tau_mosq should be bounded between 1 and 30 

#m = number of mosquito lifetimes for population decay between seasons..
m = 3 #this will be input by the user, and must be an integer greater than 2, upperbound 100, default value 3

# N_lam = max fourier mode order to calculate
N_lam = 25; #user input between 1 and 200, default value 25 (I referred to this as jmax over Skype - JD)
#setting up time and trap count vectors to fit the model to 


#first round user time inputs to integer values
t_in = round(t_in_user)


#defining N0 = number of input data points (not a user input)
N0 = length(y_in)

#defining vector of time differences to be used later (not a user input)
delta_t_in = numeric(N0-1) 
for (i in 1:(N0-1)){
  delta_t_in[i] = t_in[i+1]-t_in[i]
  if (delta_t_in[i] < 0)
      stop("non-increasing measurement times")
}



#N_pts = number of points in extended data set, N_pts = N0 + 3 always (not a user input)
N_pts = N0 + 3

#defining extended trap count and time data vectors
t_dat = numeric(N_pts)

if (t_in[1] - m / mu > 0){
 y_dat = c(0,0, y_in,0)

 t_dat[1] = 0
 t_dat[2] = (m -1) / mu
 for (i in 3 : (N_pts - 1)){
  t_dat[i] = t_in[i - 2] - t_in[1] + m / mu
 }
 t_dat[N_pts] = t_dat[N_pts - 1] + (m) / mu

 t_dat=matrix(t_dat, ncol=1)

} else {
  y_dat = c(0, y_in, 0, 0)

  t_dat[1] = 0
  for (i in 2: (N_pts - 2)){
    t_dat[i] = t_in[i - 1]
  }
  t_dat[N_pts - 1] = t_dat[N_pts - 2] + (2*(m - 1)) / mu - t_dat[2]
  t_dat[N_pts] = t_dat[N_pts - 1] + 1 / mu
}


#extended vector of time differences
delta_t_dat = numeric(N_pts)
for (i in 1 : (N_pts - 1)){
  delta_t_dat[i] = t_dat[i + 1] - t_dat[i]
}

delta_t_dat[N_pts] = 0

delta_t_dat= matrix(delta_t_dat,ncol=1)

#tau = length of 'season' in days
tau = t_dat[N_pts];
#Defining matrices 'J' and 'M'

#J matrix and inverse
J = matrix(0, nrow= N_pts, ncol=N_pts)

for (i in 1 : (N_pts - 1)){
  J[i, i] = 1
  J[i + 1, i] = -exp(-mu*delta_t_dat[i])
}

J[N_pts, N_pts] = 1;
J[1, N_pts] = -exp(-mu * delta_t_dat[N_pts])


#M matrix and inverse
M = matrix(0, nrow= N_pts, ncol=N_pts)

for (i in 2 : (N_pts - 1)){
  M[i, i] = (1 - exp( -mu * delta_t_dat[i - 1] ) ) /(mu * delta_t_dat[i - 1] ) - exp( -mu * delta_t_dat[i - 1])
  M[i + 1, i] =1- ( 1 - exp(-mu * delta_t_dat[i]) )/(mu * delta_t_dat[i])
}

M[N_pts, N_pts] = (1 - exp( (-1)*mu * delta_t_dat[N_pts - 1] ) ) /(mu * delta_t_dat[(N_pts - 1)] ) -exp( -mu * delta_t_dat[(N_pts - 1)])
M[1, N_pts] = 0
M[1, 1] = 0
M[2, 1] = 1- ( 1 - exp(-mu * delta_t_dat[1]) )/(mu * delta_t_dat[(1)]) 



###### weighting code code
#Weight matrix: diagonal entries to be filled with sqrt(number of counts on day) except for the artifical 0 measurments on end of data
W = matrix(0, nrow= N_pts, ncol=N_pts)

if( t_in[(1)] - m / mu > 0){

  W[1,1] = 1
  W[2,2] = 1
  W[N_pts,N_pts] = 1 

  for(i in 3 : N_pts-1){
    W[i,i] = sqrt(1) #fill sqrt(number of counts) here
  }
} else {

  W[1,1] = 1
  W[N_pts-1,N_pts-1] = 1
  W[N_pts,N_pts] = 1 

  for(i in 2 : N_pts-2){
    W[i,i] = sqrt(1) #fill sqrt(number of counts) here 
  }
}
#Obtaining emergence rate vector lambda_dat by contrained optimization

Aeq = matrix(numeric(N_pts), nrow=1)
Aeq[(1)] = 1
Aeq[(N_pts)] = -1
beq = 0
bineq = numeric(N_pts)
lb = numeric(N_pts)
###################  



objective_fun = function(x) {t( W %*% ( (1 / mu) * (mldivide(J, (M %*% x), pinv = TRUE)) - y_dat) )%*%( W %*% ((1 / mu) * (mldivide(J, (M %*% x), pinv = TRUE)) - y_dat))}


lambda_dat = fmincon(numeric(N_pts), objective_fun, gr= NULL, method="SQP", A= (-(1 / mu) *( inv(J) %*%  (M))), b=bineq, Aeq = Aeq, beq = beq, lb = lb, ub = NULL)

#########
 #Calculating emergence rate fourier modes lam_fourier

lam_fourier = numeric(N_lam + 1);



for (j in 1 : (N_pts-1)){
  lam_fourier[1] =  lam_fourier[1] + (1 / tau)*( lambda_dat$par[j] + lambda_dat$par[j + 1] ) * delta_t_dat[j] / 2
} #zero mode


for (k in 2 : (N_lam + 1)) #non-zero postive modes (negative modes given by complex conjugates of positve modes) 
{
  for (j in 1 : (N_pts - 1)){
    lam_fourier[(k)] = lam_fourier[(k)] +( ( lambda_dat$par[(j + 1)] - lambda_dat$par[(j)] )  / delta_t_dat[(j)] ) *( tau / (2 * pi * (k-1) ) )* ( ( exp(- 2 * pi * complex(real = 0, imaginary = 1) * (k-1) * t_dat[(j + 1)] / tau ) -exp(- 2 * pi * complex(real = 0, imaginary = 1) * (k-1) * t_dat[(j)]/ tau) ) / (2 * pi * (k-1)) )+ complex(real = 0, imaginary = 1) * ( lambda_dat$par[(j + 1)] * exp(- 2 * pi * complex(real = 0, imaginary = 1) * (k-1) * t_dat[(j + 1)] / tau ) -lambda_dat$par[(j)] * exp(- 2 * pi * complex(real = 0, imaginary = 1) * (k-1) * t_dat[(j)] /tau ) ) / (2 * pi * (k-1) )
  }
}
#defing functions for optimization code
#goto line 1670 or so to skip past all of these definitons

#Permutaion function: For a given list of numbers, this function outputs a matrix, where each row is a unique permutation of the list
uperm = function(d) {
  dat <- factor(d)
  N <- length(dat)
  n <- tabulate(dat)
  ng <- length(n)
  if(ng==1) return(d)
  a <- N-c(0,cumsum(n))[-(ng+1)]
  foo <- lapply(1:ng, function(i) matrix(combn(a[i],n[i]),nrow=n[i]))
  out <- matrix(NA, nrow=N, ncol=prod(sapply(foo, ncol)))
  xxx <- c(0,cumsum(sapply(foo, nrow)))
  xxx <- cbind(xxx[-length(xxx)]+1, xxx[-1])
  miss <- matrix(1:N,ncol=1)
  for(i in seq_len(length(foo)-1)) {
    l1 <- foo[[i]]
    nn <- ncol(miss)
    miss <- matrix(rep(miss, ncol(l1)), nrow=nrow(miss))
    k <- (rep(0:(ncol(miss)-1), each=nrow(l1)))*nrow(miss) + 
               l1[,rep(1:ncol(l1), each=nn)]
    out[xxx[i,1]:xxx[i,2],] <- matrix(miss[k], ncol=ncol(miss))
    miss <- matrix(miss[-k], ncol=ncol(miss))
  }
  k <- length(foo)
  out[xxx[k,1]:xxx[k,2],] <- miss
  out <- out[rank(as.numeric(dat), ties="first"),]
  foo <- cbind(as.vector(out), as.vector(col(out)))
  out[foo] <- d
  t(out)

}



#this function computes the "P" product and exponentials for a given k
P_vals = function(z, rho, Npulse, tau, k){
  P_func = function(x){ rho * 1 /(log(1/(1-rho)) - 2 * pi * complex(real = 0, imaginary = 1) * x)}

  z_vec = matrix(0, nrow = Npulse, ncol = 1);

  for(i in 1:Npulse){
    z_vec[i, 1] = z[i]
  }

      #determine number of integer vectors to permute (will be smaller for
      #only two and three pulses). number of combos = N_terms 

     if (k == 0){
        if (Npulse == 2){
          N_terms = 5
        }else if(Npulse == 3){
          N_terms = 7
        }else {
          N_terms = 8
        }


        #create a matrix to hold the integer vectors to permute, and
        #initialize to zero. Each column will give an integer vector
        int_vecs = matrix(0, nrow=Npulse, ncol=N_terms);

        #the first 5 integer vectors have at most two non-zero elements.
        #This loop replaces the first two zeros in the first 5 columns of int_vecs
        #with the appropriate integers.        
        for (i in 1:5){
            int_vecs[1:2, i] = c((i - 1), -(i -1))
        }

        #if there are are three or more pulses, we need to include
        #integer vectors with three non-zero terms
        if (Npulse >= 3){
            int_vecs[1:3, 6] = c(2, -1,-1)
            int_vecs[1:3, 7] = c(-2, 1, 1)
        }

        #if there are four or more pulses, then we need to include an
        #integer vector with four non-zero terms
        if (Npulse >= 4){
          int_vecs[1:4, 8] = c(1, 1, -1,-1)
        }


        #calculates the "P" functions for each column of integer combos in
        #int_vec.  "P" function values are independet of integer
        #permutations. pre_factors is a list which holds the "P"-function
        #values for each integer combo 
        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i]); 
            }
        }


        #Now calculate the exponential terms which will multiply the "P"functions in the pre_factors list
        #post_factors = list of the exponential terms to multiply the
        #               corresponding "P" functions in the pre_factors list
        post_factors = numeric(N_terms) #initialize to zero

        for (i in 1: N_terms){ #for each integer combo given by the columns of int_vecs... 

           #calculates the unique permutations of the ith integer combo
           #int_vecs(:, i) = ith column of int_vecs matrix
           #perm_list = Nperms x Npulse matrix, where Nperms is the number
           #           of unique permutations of the ith integer combo
           # Each row of perm_list gives a unique permutaion of the ith integer combo 
           perm_list = uperm(int_vecs[,i])

           if( i == 1){
             Nperms = 1
           }else{
             Nperms = length(perm_list[,1]) #number of unique permutations of the ith integer combo
           }


           for (m in 1:Nperms){ #for each uniqe permutation of the ith integer combo, add the corresponding      exponential to the running total of the corresponding post_factor value

             if(i == 1){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1)  *   (perm_list %*% z) / tau) 
             } else {
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1)  * (perm_list[m,] %*% z) / tau)
             }
            }#perm_list[m, ] = mth row of perm_list = mth unique permutaton of ith integer combo


           }



        val = 0
        for (i in 1:N_terms){ #add together the (pre_factor * post_factor) for each integer combo
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)          

     }else if(abs(k) == 1){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else{
          N_terms = 8
        }


        int_vecs = matrix(0,nrow=Npulse, ncol=N_terms)
        for (i in 1:5){
            int_vecs[1:2, i] = sign(k) * c(kk + (i - 1), -(i -1))
        }

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) * c(1 , 1 , -1)
            int_vecs[1:3, 7] = sign(k) * c(3 , -1 , -1) 
            int_vecs[1:3, 8] = sign(k) * c(2 , -2 , 1)
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i]) 
            }
        }        

        post_factors = numeric(N_terms)  
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]

           for (m in 1:Nperms){
              post_factors[i] = post_factors[i] +exp(-2 * pi * complex(real = 0, imaginary = 1)  * perm_list[m, ] %*% z / tau)
        }
        }


        val = 0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)                      

   }
   else if(abs(k) == 2){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else if (Npulse == 3){
            N_terms = 6
        }else{
            N_terms = 7
        }
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk + 2, -2)
        int_vecs[1:2, 5] = sign(k) * c(kk + 3, -3)

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(2, -1,1)
        }
        if (Npulse >= 4){
            int_vecs[1:4, 7] = sign(k) *c(1, 1, 1,-1)
        }


        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i]) 
            }
        }        

        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 2){
             Nperms = 1;
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

             Nperms = dim(perm_list)[1]

             for (m in 1:Nperms){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
    }


        val = 0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val) 


  }else if(abs(k) == 3){
        kk = abs(k)

        if (Npulse == 2){
          N_terms = 5
        }else{
          N_terms = 8
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk + 2, -2)
        int_vecs[1:2, 5] = sign(k) * c(kk + 3, -3)


        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(1, 1, 1)
            int_vecs[1:3, 7] = sign(k) *c(3, 1, -1)
            int_vecs[1:3, 8] = sign(k) *c(2, 2, -1)            
        }       

        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 3 && i == 6){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{
             Nperms = dim(perm_list)[1]

             for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
    }


      val = 0

      for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
      }

      return(val)


     }else if(abs(k) == 4){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else if(Npulse == 3){
            N_terms = 7
        }else{
          N_terms = 8
        }


        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk +1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk + 2, -2)

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(4, -1, 1)
            int_vecs[1:3, 7] = sign(k)*c(2, 1, 1)            
        }
        if (Npulse >= 4){
            int_vecs[1:4, 8] = sign(k) *c(1, 1, 1, 1)
        }         

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

       for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 4 && i == 8){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else if(Npulse == 2 && i == 3){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           } else{

           Nperms = dim(perm_list)[1]


             for (m in 1:Nperms){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
        }
        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

     }else if(abs(k) == 5){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else{
            N_terms = 7
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk + 2, -2)


        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(2, 2, 1);
            int_vecs[1:3, 7] = sign(k) *c(3, 1, 1);           
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 6){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 6
        }else{
           N_terms = 7
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk - 3, 3)
        int_vecs[1:2, 5] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 6] = sign(k) * c(kk + 2, -2)


        if (Npulse >= 3){
            int_vecs[1:3, 7] = sign(k) *c(4, 1, 1)           
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 4){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

              Nperms = dim(perm_list)[1]


              for (m in 1:Nperms){
                 post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
              }
           }
        }


        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 7){
        kk = abs(k)

        N_terms = 6
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk - 3, 3)
        int_vecs[1:2, 5] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 6] = sign(k) * c(kk + 2, -2)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


           for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
            }
        }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 8){
        kk = abs(k)

        N_terms = 6
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk -3, +3)
        int_vecs[1:2, 6] = sign(k) * c(kk -4, +4)



        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 6){
               Nperm = 1
               post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

              Nperms = dim(perm_list)[1]


              for (m in 1:Nperms){
                  post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
              }
          }
        }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

     }else if(abs(k) == 9){
        kk = abs(k)

        N_terms = 5
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 5] = sign(k) * c(kk -3, +3)


       pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[i] * post_factors[i] 
        }

       return(val)

  }else if(abs(k) == 10){
        kk = abs(k)

        N_terms = 4
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

  }else if(abs(k) == 11){
        kk = abs(k)

        N_terms = 4

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)


       pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        out = val

  } else{
        kk = abs(k)

        N_terms = 3
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * P_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[i] * post_factors[i] 
        }

        return(val)

  }
}




#this function computes the "Q" product and exponentials with the fourier modes for a given k
Q_vals = function(z, rho, Npulse, tau, j, jj){
  Q_func = function(x){ (rho / (1 - rho)) * 1 /(log(1/(1-rho)) + 2 * pi * complex(real = 0, imaginary = 1) * x)}

   k = -(j + jj)  

      #determine number of integer vectors to permute (will be smaller for
      #only two and three pulses). number of combos = N_terms
     if (k == 0){
        if (Npulse == 2){
          N_terms = 5
        }else if(Npulse == 3){
          N_terms = 7
        }else {
          N_terms = 8
        }


        #create a matrix to hold the integer vectors to permute, and
        #initialize to zero. Each column will give an integer vector
        int_vecs = matrix(0, nrow=Npulse, ncol=N_terms);

        #the first 5 integer vectors have at most two non-zero elements.
        #This loop replaces the first two zeros in the first 5 columns of int_vecs
        #with the appropriate integers.        
        for (i in 1:5){
            int_vecs[1:2, i] = c((i - 1), -(i -1))
        }

        #if there are are three or more pulses, we need to include
        #integer vectors with three non-zero terms
        if (Npulse >= 3){
            int_vecs[1:3, 6] = c(2, -1,-1)
            int_vecs[1:3, 7] = c(-2, 1, 1)
        }

        #if there are four or more pulses, then we need to include an
        #integer vector with four non-zero terms
        if (Npulse >= 4){
          int_vecs[1:4, 8] = c(1, 1, -1,-1)
        }


        #calculates the "P" functions for each column of integer combos in
        #int_vec.  "P" function values are independet of integer
        #permutations. pre_factors is a list which holds the "P"-function
        #values for each integer combo 
        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i]); 
            }
        }


        #Now calculate the exponential terms which will multiply the "P"functions in the pre_factors list
        #post_factors = list of the exponential terms to multiply the
        #               corresponding "P" functions in the pre_factors list
        post_factors = numeric(N_terms) #initialize to zero

        for (i in 1: N_terms){ #for each integer combo given by the columns of int_vecs... 

           #calculates the unique permutations of the ith integer combo
           #int_vecs(:, i) = ith column of int_vecs matrix
           #perm_list = Nperms x Npulse matrix, where Nperms is the number
           #           of unique permutations of the ith integer combo
           # Each row of perm_list gives a unique permutaion of the ith integer combo 
           perm_list = uperm(int_vecs[,i])

           if( i == 1){
             Nperms = 1
           }else{
             Nperms = length(perm_list[,1]) #number of unique permutations of the ith integer combo
           }


           for (m in 1:Nperms){ #for each uniqe permutation of the ith integer combo, add the corresponding      exponential to the running total of the corresponding post_factor value

             if(i == 1){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1)  *   (perm_list %*% z) / tau) 
             } else {
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1)  * (perm_list[m,] %*% z) / tau)
             }
            }#perm_list[m, ] = mth row of perm_list = mth unique permutaton of ith integer combo


           }



        val = 0
        for (i in 1:N_terms){ #add together the (pre_factor * post_factor) for each integer combo
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)          

     }else if(abs(k) == 1){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else{
          N_terms = 8
        }


        int_vecs = matrix(0,nrow=Npulse, ncol=N_terms)
        for (i in 1:5){
            int_vecs[1:2, i] = sign(k) * c(kk + (i - 1), -(i -1))
        }

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) * c(1 , 1 , -1)
            int_vecs[1:3, 7] = sign(k) * c(3 , -1 , -1) 
            int_vecs[1:3, 8] = sign(k) * c(2 , -2 , 1)
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i]) 
            }
        }        

        post_factors = numeric(N_terms)  
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]

           for (m in 1:Nperms){
              post_factors[i] = post_factors[i] +exp(-2 * pi * complex(real = 0, imaginary = 1)  * perm_list[m, ] %*% z / tau)
        }
        }


        val = 0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)                      

   }
   else if(abs(k) == 2){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else if (Npulse == 3){
            N_terms = 6
        }else{
            N_terms = 7
        }
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk + 2, -2)
        int_vecs[1:2, 5] = sign(k) * c(kk + 3, -3)

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(2, -1,1)
        }
        if (Npulse >= 4){
            int_vecs[1:4, 7] = sign(k) *c(1, 1, 1,-1)
        }


        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i]) 
            }
        }        

        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 2){
             Nperms = 1;
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

             Nperms = dim(perm_list)[1]

             for (m in 1:Nperms){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
    }


        val = 0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val) 


  }else if(abs(k) == 3){
        kk = abs(k)

        if (Npulse == 2){
          N_terms = 5
        }else{
          N_terms = 8
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk + 2, -2)
        int_vecs[1:2, 5] = sign(k) * c(kk + 3, -3)


        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(1, 1, 1)
            int_vecs[1:3, 7] = sign(k) *c(3, 1, -1)
            int_vecs[1:3, 8] = sign(k) *c(2, 2, -1)            
        }       

        pre_factors = matrix(1, ncol=N_terms, nrow=1)
        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 3 && i == 6){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{
             Nperms = dim(perm_list)[1]

             for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
    }


      val = 0

      for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
      }

      return(val)


     }else if(abs(k) == 4){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else if(Npulse == 3){
            N_terms = 7
        }else{
          N_terms = 8
        }


        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk +1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk + 2, -2)

        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(4, -1, 1)
            int_vecs[1:3, 7] = sign(k)*c(2, 1, 1)            
        }
        if (Npulse >= 4){
            int_vecs[1:4, 8] = sign(k) *c(1, 1, 1, 1)
        }         

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

       for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 4 && i == 8){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else if(Npulse == 2 && i == 3){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           } else{

           Nperms = dim(perm_list)[1]


             for (m in 1:Nperms){
                post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
             }
           }
        }
        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

     }else if(abs(k) == 5){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 5
        }else{
            N_terms = 7
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk + 2, -2)


        if (Npulse >= 3){
            int_vecs[1:3, 6] = sign(k) *c(2, 2, 1);
            int_vecs[1:3, 7] = sign(k) *c(3, 1, 1);           
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 6){
        kk = abs(k)

        if (Npulse == 2){
            N_terms = 6
        }else{
           N_terms = 7
        }

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk - 3, 3)
        int_vecs[1:2, 5] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 6] = sign(k) * c(kk + 2, -2)


        if (Npulse >= 3){
            int_vecs[1:3, 7] = sign(k) *c(4, 1, 1)           
        }

        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 4){
             Nperms = 1
             post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

              Nperms = dim(perm_list)[1]


              for (m in 1:Nperms){
                 post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
              }
           }
        }


        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 7){
        kk = abs(k)

        N_terms = 6
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk - 3, 3)
        int_vecs[1:2, 5] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 6] = sign(k) * c(kk + 2, -2)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


           for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
            }
        }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

    }else if(abs(k) == 8){
        kk = abs(k)

        N_terms = 6
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 4] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 5] = sign(k) * c(kk -3, +3)
        int_vecs[1:2, 6] = sign(k) * c(kk -4, +4)



        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])

           if(Npulse == 2 && i == 6){
               Nperm = 1
               post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list %*% z / tau)
           }else{

              Nperms = dim(perm_list)[1]


              for (m in 1:Nperms){
                  post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
              }
          }
        }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

     }else if(abs(k) == 9){
        kk = abs(k)

        N_terms = 5
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)
        int_vecs[1:2, 5] = sign(k) * c(kk -3, +3)


       pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[i] * post_factors[i] 
        }

       return(val)

  }else if(abs(k) == 10){
        kk = abs(k)

        N_terms = 4
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        return(val)

  }else if(abs(k) == 11){
        kk = abs(k)

        N_terms = 4

        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)
        int_vecs[1:2, 4] = sign(k) * c(kk -2, 2)


       pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[1,i] * post_factors[i] 
        }

        out = val

  } else{
        kk = abs(k)

        N_terms = 3
        int_vecs = matrix(0,Npulse, N_terms)

        int_vecs[1:2, 1] = sign(k) * c(kk + 0, 0)
        int_vecs[1:2, 2] = sign(k) * c(kk - 1, 1)
        int_vecs[1:2, 3] = sign(k) * c(kk + 1, -1)


        pre_factors = matrix(1, ncol=N_terms, nrow=1)

        for (i in 1:N_terms){
            for (m in 1:Npulse){
                pre_factors[1,i] = pre_factors[1,i] * Q_func(int_vecs[m,i])  
            }
        }       
        post_factors = numeric(N_terms)
        for (i in 1: N_terms){
           perm_list = uperm(int_vecs[,i])
           Nperms = dim(perm_list)[1]


       for (m in 1:Nperms){
              post_factors[i] = post_factors[i] + exp(-2 * pi * complex(real = 0, imaginary = 1) * perm_list[m, ] %*% z / tau)
        }
    }

        val=0
        for (i in 1:N_terms){
           val = val + pre_factors[i] * post_factors[i] 
        }

        return(val)

  }
}


#this function computes the fourier sum for 1 pulse 
sum_1_pulse = function(z, rho, mu, tau, kmax, modes){

jmax = length(modes) #modes is the list of fourier modes, jmax = number of list elements
out_val = 0 #running total for output value

P_func = function(x) {rho * 1 /(log(1/(1-rho)) - 2 * pi * complex(real = 0, imaginary = 1) * x)}
Q_func = function(x) {(rho / (1 - rho)) * 1 /(log(1/(1-rho)) + 2 * pi * complex(real = 0, imaginary = 1) * x)}


for (k in -kmax:kmax){

    pre_factor = P_func(k)

    post_factor = exp( -2 * pi * complex(real = 0, imaginary = 1) * k * z / tau) 
    P_val = pre_factor * post_factor

    Q_val = 0

    for (j in (-jmax+1):(jmax-1)){ 
        pre_factor = Q_func(-k-j)
        post_factor = exp( -2 * pi * complex(real = 0, imaginary = 1) * (-k -j)  * z / tau)

       if (j ==0){
           Q_val =Q_val +  pre_factor * post_factor * modes[1] / mu
       }else if (j <0){
           Q_val =Q_val + pre_factor * post_factor * Conj(modes[-(j-1)]) / mu 
       }else if (j>0){
           Q_val =Q_val + pre_factor * post_factor * modes[j+1] / mu
       } 
      }


    out_val = out_val + (P_val)*(Q_val) /( 1 -  log(1-rho) / (mu * tau) - 2 * pi * complex(real = 0, imaginary = 1) * k /(mu * tau));   

} 

return(Re(out_val))

}

# this function computes the Fourier sum for N pulses, where the "P" and "Q" products and exponentials are computeded by the "P_vals" and "Q_vals" functions  
sum_N_pulse = function(z, rho, Npulse, mu, tau, kmax, modes){
jmax = length(modes)
out_val = 0 #running total for output


for (k in -kmax:kmax){

    P_val = P_vals(z, rho, Npulse, tau, k) #compute "P" product and exponentials at this k value

    Q_val = 0 #running total for "Q" product and exponentials
    #add together "Q" products and exponentials at (k + j) value for all j emergence fourier modes
    for (j in (-jmax+1):(jmax-1)){ 

       #if (abs(k+j) < kmax){

       if (j ==0){
           Q_val =Q_val +  Q_vals(z, rho, Npulse, tau, k, j)* modes[1] / mu #zero fourier mode 
       }else if(j <0){
           Q_val = Q_val + Q_vals(z, rho, Npulse, tau, k, j) * Conj(modes[-(j-1)]) / mu #negative fourier modes
       }else if(j>0){
           Q_val =Q_val + Q_vals(z, rho, Npulse, tau, k, j) * modes[j+1] / mu #positive fourier modes
       } 
       #}
    }

    #add contribution from this k value to running output total
    out_val = out_val + (P_val)*(Q_val) /( 1 - Npulse * log(1-rho) / (mu * tau) - 2 * pi * complex(real= 0, imaginary = 1) * k /(mu * tau))
}
out = Re(out_val)
return(out)

}
##optimization parameters set by user


kmax = 20 #max number of dynamics fourier modes to use in calculating fourier sum (different than N_lam = max emergence fourier mode set by user for curve fitting portion of the code.  I've often refered to N_lam as jmax when we've talked.  Hopefully not too confusing). kmax should be an integer between 2 and 200, defualt at 20

global_opt = 0 #set to 0 if user chooses local optimum, 1 if user chooses golbal GN_DIRECT_L_RAND method, 2 if user chooses global GN_ISRES mthod

Npulse = 4 #number of pulses, set by user, integer between 1 and 10
rho = .30 #percent knockdown (user set between .01 and .30, e.g. 1% to 30% knockdown)
days_between = 3 #minimum number of days allowed between pulses set by user (integer bewtween 0 and 30 days) 
#code to execute optimization algorithms

#install.packages("nloptr")
library("nloptr") #used for local cobyla optimum function and global optimum functions

if(Npulse == 1){ # 1 pulse
  fun1 = function(x)sum_1_pulse(x,rho, mu, tau, kmax, lam_fourier)
  guess = tau /2


  if(global_opt == 0){ #local optimum 
    opt_out = cobyla(guess, fun1, lower = 0, upper = tau)

    times = opt_out$par
    ave_pop_fourier = opt_out$value

  }else if(global_opt == 1){ #global optimum directL

    opt_out = directL(fun1, lower = 0, upper = tau, randomized = TRUE)

    times = opt_out$par
    ave_pop_fourier = opt_out$value

  }else if(global_opt == 2){ #global optimum isres


     opt_out = nloptr(x0=guess, eval_f=fun1, lb = 0, ub = tau, eval_g_ineq = NULL, eval_g_eq = NULL,                 opts = list(algorithm="NLOPT_GN_ISRES",maxeval=10000))

    times = opt_out$solution
    ave_pop_fourier = opt_out$objective

  }


} else{ #2 or more pulses
  funN = function(x)sum_N_pulse(x,rho, Npulse, mu, tau, kmax, lam_fourier) 

  #matrix and vector for inequality constraints to enforce minimum days between
  A_mat = matrix(0,nrow=Npulse - 1, ncol=Npulse)
  b_vec = (-1) * days_between * matrix(1, Npulse-1, 1)

  for (i in 1:(Npulse -1)){
      A_mat[i,i] = 1
      A_mat[i, i+ 1] = -1
  }


  l_bound = numeric(Npulse) #column vector of zeros for pulse lower bound
  u_bound = tau * matrix(1,Npulse, 1) #column vector of taus for pulse upper bound

  guess = numeric(Npulse); #vector for initial guesses for fmincon

  for(i in 1:Npulse){
       if(t_in[1] - m / mu > 0 ){

         guess[i] = i * (t_dat[N_pts - 1] - t_dat[3]) / (Npulse + 1) + t_dat[3]
      }else{

         guess[i] = i * (t_dat[N_pts - 2] - t_dat[2]) / (Npulse + 1) + t_dat[2]
      }
   } 

    if(global_opt == 0){#local optimum  

      opt_out = fmincon(guess, funN, gr= NULL, method="SQP", A = A_mat, b=b_vec, Aeq = NULL, beq = NULL, lb = l_bound, ub = u_bound)


    times = opt_out$par
    ave_pop_fourier = opt_out$value

    }else if(global_opt == 1){ #global optimum directL

      opt_out = directL(funN, lower = l_bound, upper = u_bound, randomized = TRUE)

      times = opt_out$par
      ave_pop_fourier = opt_out$value

    }else if(global_opt == 2){ #global optimum isres

      ineq = function(x){(-1)*A_mat %*%x - b_vec}

      opt_out = nloptr(x0=guess, eval_f=funN, lb = l_bound, ub = u_bound, eval_g_ineq = ineq, eval_g_eq = NULL,                 opts = list(algorithm="NLOPT_GN_ISRES",maxeval=10000))

      times = opt_out$solution
      ave_pop_fourier = opt_out$objective

    }
}
#code to shift times and generate plot data

#shift pulse times back to original times input by user
if (t_in[1]- (m/mu)>0){ 
  pulse_times_output = times - t_dat[3] + t_in[1]
}else {
  pulse_times_output = times - t_dat[2] + t_in[1]
  }




#code to plot results:  
t_steps = 6 * tau*10 + 1 # ten time steps per day, six total seasons (need to integrate over many seasons to reach periodic population curves)
t_vec = linspace(0, 6*tau, n = t_steps); #list between 0 and 6*tau, t_steps long


y_fourier_controlled = numeric(t_steps) #list (row vector) for controlled population values at each time step
y_fourier_uncontrolled = numeric(t_steps) #list (row vector) for uncontrolled population values at each time step


#simple integrator to calculate population values
for (i in 2:t_steps){
  for (j in 1: N_pts - 1){
    if (mod(t_vec[i-1], tau) >= t_dat[j] && mod(t_vec[i-1],tau) < t_dat[j + 1]){
       y_fourier_controlled[i] = y_fourier_controlled[i-1] +(-mu * y_fourier_controlled[i-1] +lambda_dat$par[j+1] * (mod(t_vec[i-1], tau) -t_dat[j])/ delta_t_dat[j] +lambda_dat$par[j] * (t_dat[j+1] -mod(t_vec[i-1], tau)) / delta_t_dat[j])*(t_vec[i] - t_vec[i-1]);

      y_fourier_uncontrolled[i] = y_fourier_uncontrolled[i-1] +(-mu * y_fourier_uncontrolled[i-1] +lambda_dat$par[j+1] * (mod(t_vec[i-1], tau) -t_dat[j])/ delta_t_dat[j] +lambda_dat$par[j] * (t_dat[j+1] -mod(t_vec[i-1], tau)) / delta_t_dat[j])*(t_vec[i] - t_vec[i-1])
    }

    }

 #impulses for the controlled population
    for (j in 1:Npulse){
      if (mod(t_vec[i], tau) >= times[j] && mod(t_vec[i-1], tau) < times[j]){
           y_fourier_controlled[i] = (1-rho) * y_fourier_controlled[i];
    }
  }

}

pop_cont = numeric(10*tau+1) #list for controlled population vlaues, one season long
pop_un_cont = numeric(10*tau+1) #list for uncontrolled population vlaues, one season long 
t_vec_plot = numeric(10*tau+1) #list for time values, one season long

for (i in 1:(10*tau+1)){
    pop_cont[i] = y_fourier_controlled[i + 10*tau*5] #take controlled population values from the integration for the final season
    pop_un_cont[i] = y_fourier_uncontrolled[i+ 10*tau*5] #take uncontrolled population values from the integration for the final season

    #shift plot times for population curves back to original times input by user
    if (t_in[1] - m / mu > 0) {
        t_vec_plot[i] = t_vec[i]-t_dat[(3)] +t_in[(1)]

    } else{
       t_vec_plot[i] = t_vec[i] -t_dat[(2)] + t_in[(1)]
    }


}


#shift data times back to orginal times input by user
if (t_in[(1)] - (m / mu) > 0){ 
  t_dat_plot = t_dat  - t_dat[(3)] + t_in[(1)]
}else {
  t_dat_plot = t_dat  - t_dat[2] + t_in[1]
}
#code to generate outputs to user

#install.packages("sfsmisc")
library("sfsmisc") #for the integrate.xy function


ave_pop_un_cont = integrate.xy(t_vec_plot, pop_un_cont)/(tau)
ave_pop_cont = integrate.xy(t_vec_plot, pop_cont)/(tau)

percent_reduction = (ave_pop_un_cont - ave_pop_cont) / ave_pop_un_cont
accuracy_measure = (ave_pop_fourier - ave_pop_cont) / ave_pop_cont


#outputs to display to user
print(pulse_times_output) #times of optimal pulses in units of day of year
print(ave_pop_un_cont) #average population over interval (0, tau) under uncontrolledfourier dynamics
print(ave_pop_cont) #average population over interval (0, tau) under controlled fourier dynamics
print(percent_reduction) #fractional reduction in average controlled population relative to uncontrolled 
print(accuracy_measure) #reliability measuere - if the magnitude of this quantity is larger than .05 or .1 or so, then the fourier sum may be of unrelaiable accuracy, and the user should try increasing kmax

#plots to display to user
plot(t_dat_plot, y_dat, ylim = c(0,1.5 * max(y_dat)), xlim=c(t_dat_plot[1],t_dat_plot[1]+tau), col="blue",
     main="Fitted Population Model",
ylab="Mosquito population count",
xlab="Day of year")
lines(t_vec_plot, pop_un_cont, col="red")
lines(t_vec_plot, pop_cont, col = "orange")
legend("topleft",c("Data","Uncontrolled Fourier Approximation", "Controlled Fourier Approximation"),fill=c("blue","red","orange"))


Try the mosqcontrol package in your browser

Any scripts or data that you put into this service are public.

mosqcontrol documentation built on Aug. 7, 2020, 5:06 p.m.