multiscale.bottomUp | R Documentation |
Multiscale MOSUM procedure with symmetric bandwidths combined with bottom-up bandwidth-based merging.
multiscale.bottomUp( x, G = bandwidths.default(length(x), G.min = max(20, ceiling(0.05 * length(x)))), threshold = c("critical.value", "custom")[1], alpha = 0.1, threshold.function = NULL, eta = 0.4, do.confint = FALSE, level = 0.05, N_reps = 1000, ... )
x |
input data (a |
G |
a vector of (symmetric) bandwidths, given as either integers less than |
threshold |
string indicating which threshold should be used to determine significance.
By default, it is chosen from the asymptotic distribution at the given significance level |
alpha |
a numeric value for the significance level with
|
threshold.function |
function object of form |
eta |
see mosum |
do.confint |
flag indicating whether to compute the confidence intervals for change points |
level |
use iff |
N_reps |
use iff |
... |
further arguments to be passed to the mosum calls |
See Algorithm 1 in the first referenced paper for a comprehensive description of the procedure and further details.
S3 object of class multiscale.cpts
, which contains the following fields:
x |
input data |
cpts |
estimated change points |
cpts.info |
data frame containing information about estimated change points |
pooled.cpts |
set of change point candidates that have been considered by the algorithm |
G |
bandwidths |
threshold, alpha, threshold.function |
input parameters |
eta |
input parameters |
do.confint |
input parameter |
ci |
object of class |
A. Meier, C. Kirch and H. Cho (2021) mosum: A Package for Moving Sums in Change-point Analysis. Journal of Statistical Software, Volume 97, Number 8, pp. 1-42. <doi:10.18637/jss.v097.i08>.
M. Messer et al. (2014) A multiple filter test for the detection of rate changes in renewal processes with varying variance. The Annals of Applied Statistics, Volume 8, Number 4, pp. 2027-2067.
H. Cho and C. Kirch (2022) Bootstrap confidence intervals for multiple change points based on moving sum procedures. Computational Statistics & Data Analysis, Volume 175, pp. 107552.
x1 <- testData(lengths = c(100, 200, 300, 300), means = c(0, 1, 2, 2.7), sds = rep(1, 4), seed = 123)$x mbu1 <- multiscale.bottomUp(x1) plot(mbu1) summary(mbu1) x2 <- testData(model = "mix", seed = 1234)$x threshold.custom <- function(G, n, alpha) { mosum.criticalValue(n, G, G, alpha) * log(n/G)^0.1 } mbu2 <- multiscale.bottomUp(x2, G = 10:40, threshold = "custom", threshold.function = threshold.custom) plot(mbu2) summary(mbu2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.