fitting_model | R Documentation |
This function fits continuous-time movement models to simulated location
data using the ctmm
package. It estimates movement parameters for each
simulated trajectory, optionally running in parallel for efficiency.
fitting_model(
obj,
set_target = c("hr", "ctsd"),
.dur = NULL,
.dti = NULL,
.tau_p = NULL,
.tau_v = NULL,
.error_m = NULL,
.check_sampling = FALSE,
.rerun = FALSE,
.parallel = TRUE,
.trace = FALSE
)
obj |
A list of simulated movement datasets. |
set_target |
A character vector indicating the research target(s). Options:
|
.dur |
Numeric, sampling duration of the simulated data (required if |
.dti |
Numeric, sampling interval of simulated data (required if |
.tau_p |
List, position autocorrelation timescale (optional). |
.tau_v |
List, velocity autocorrelation timescale (optional). |
.error_m |
Numeric, if simulating a dataset with location error (in meters). |
.check_sampling |
Logical; if |
.rerun |
Logical; if |
.parallel |
Logical; if |
.trace |
Logical; if |
The function first generates initial parameter estimates using ctmm::ctmm.guess()
.
It then selects the best movement model for each simulation using par.ctmm.select()
.
The function ensures that each fitted model is centered at the origin (x = 0, y = 0
) before returning.
A list of fitted movement models, one per simulation.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.