Nothing
#' Part-Linear Multidimensional Projection
#'
#' Creates a k-dimensional representation of the data. As input, a subsample and
#' its k-dimensional mapping (control points) are required. The method
#' approximates the subsample mapping to a linear mapping and then applies the
#' same mapping to all instances.
#'
#' @param X A dataframe or matrix representing the data.
#' @param sample.indices The indices of subsamples used as control points.
#' @param Ys The control points.
#' @param k The target dimensionality.
#' @return The low-dimensional representation of the data.
#'
#' @references Paulovich, F.V.; Silva, C.T.; Nonato, L.G., "Two-Phase Mapping
#' for Projecting Massive Data Sets," Visualization and Computer Graphics,
#' IEEE Transactions on , vol.16, no.6, pp.1281,1290, Nov.-Dec. 2010.
#'
#' @examples
#'
#' # Iris example
#' emb <- plmp(iris[,1:4])
#' plot(emb, col=iris$Species)
#'
#' @useDynLib mp
#' @export
plmp <- function(X, sample.indices=NULL, Ys=NULL, k=2) {
if (!is.matrix(X)) {
X <- as.matrix(X)
}
n <- nrow(X)
m <- ncol(X)
if (is.null(sample.indices)) {
sample.indices <- sample(1:n, 3*sqrt(n))
}
Xs <- X[sample.indices, ]
if (is.null(Ys)) {
# FIXME: forceScheme is always 2D, using k > 2 will break the code
Ys <- forceScheme(dist(Xs))
}
if (!is.matrix(Ys)) {
Ys <- as.matrix(Ys)
}
if (ncol(Ys) != k) {
stop("target dimensionality does not match Ys")
}
if (length(sample.indices) != nrow(Ys)) {
stop("sample.indices and Ys must have the same number of instances")
}
Ys <- scale(Ys, center=T, scale=F)
P <- matrix(NA, nrow=m, ncol=k)
A <- t(Xs) %*% Xs
L <- chol(A)
for (j in 1:k) {
b <- t(Xs) %*% Ys[, j]
P[, j] <- backsolve(L, backsolve(L, b, transpose=T))
}
Y <- matrix(NA, nrow <- n, ncol <- k)
Y[sample.indices, ] <- Ys
Y[-sample.indices, ] <- X[-sample.indices, ] %*% P
Y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.