knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This guide presents an illustration of a simple application of mpindex
package for computing Multidimensional Poverty Index (MPI) using the Alkire-Foster (AF) counting method developed by Sabina Alkire and James Foster.
To install the mpindex
package from CRAN:
install.packages('mpindex')
If you want to get the latest development version of mpindex
, install it from GitHub. Note that you may need to install devtools
.
# install.packages("devtools") devtools::install_github('yng-me/mpindex')
Load the package once you have successfully completed the installation.
library(mpindex)
The initial step is to prepare an MPI specification file which will serve as references in the computation as well as generation of output in the later part of the process. This file should contain information about MPI dimensions, indicators and their corresponding weights.
This file should also be easy to create using the most common and accessible file types such as .xlsx
(Excel), .json
, .csv
, or .txt
(TSV).
For convenience, mpindex
has included built-in specification files (in different formats). Each file contains dimensions, indicators, weight, and other relevant information of the Global MPI.
To see the list of files available:
system.file("extdata", package = "mpindex") |> list.files()
To use a built-in specification file, say the .csv
file, use below script to first get the full path of the file.
specs_file <- system.file("extdata", "global-mpi-specs.csv", package = "mpindex")
read.csv(specs_file) |> gt::gt() |> gt::tab_header( title = 'Global MPI – Dimensions, Indicators, Deprivation Cutoffs, and Weights' ) |> gt::tab_options( table.width = '100%', table.font.size = 12, ) |> gt::tab_footnote('Source: Alkire, S., Kanagaratnam, U. and Suppa, N. (2020). ‘The global Multidimensional Poverty Index (MPI): 2020 revision’, OPHI MPI Methodological Note 49, Oxford Poverty and Human Development Initiative, University of Oxford.') |> gt::fmt_number( columns = 4, decimals = 3 )
You can also define and create your own specification file if you prefer to or if you happen to use different sets of dimensions and indicators. At the minimum, however, this file should contain the following columns/variables:
Dimension
, Indicator
, Variable
, Weight
,Description
(optional). Note that the order in which you put these columns does not matter and also the names are not case sensitive, but make sure to spell the column names correctly.
You may download the template here if you do not want to start from scratch: MPI specification file sample.
define_mpi_specs
Once you have prepared the specification file, load it using the define_mpi_specs
function (type ?define_mpi_specs
for a help text).
For demonstration purposes, we will use the built-in specification file, discussed above.
specs_file <- system.file("extdata", "global-mpi-specs.csv", package = "mpindex") define_mpi_specs(specs_file)
define_mpi_specs
requires a specification file as its first argument. The default poverty cutoff is set to 1/3
(based on Global MPI). You can also define a list of poverty cutoffs by specifying in the .poverty_cutoffs
argument to achieve gradient MPIs.
define_mpi_specs( .mpi_specs_file = specs_file, .poverty_cutoffs = c(1/3, 0.2, 0.8) )
If your dataset contains unique ID, like uuid
, it is recommended to define it here using the .uid
argument.
define_mpi_specs( .mpi_specs_file = specs_file, .uid = 'uuid' )
You can also set the aggregation level. Make sure it corresponds to the column name present in your dataset (see ?df_househod
and more below).
define_mpi_specs( .mpi_specs_file = specs_file, .poverty_cutoffs = c(1/3, 0.2, 0.8), .uid = 'uuid', .aggregation = 'class' )
.unit_of_analysis
, .source_of_data
, and .names_separator
are merely used for auto labels when generating the output later.
Note: define_mpi_specs
returns a data frame of MPI specs defined in the specs file. By default, it saves a global option named mpi_specs
which can be accessed using getOption('mpi_specs')
.
For our demonstration, we will use the use_global_mpi_specs()
wrapper function, which yields the same result as calling define_mpi_specs
and passing the built-in specs file.
use_global_mpi_specs( .uid = 'uuid', .aggregation = 'class' )
use_global_mpi_specs( .uid = 'uuid', .aggregation = 'class' )
The user of mpindex
is assumed to have basic familiarity with the concept of tidy data as well as able to perform data wrangling and transformation using the tidyverse
ecosystem. Under the hood, mpindex
uses dplyr
verbs to perform data manipulation.
We also assume that your dataset is already tidy and ready for analysis. See R for Data Science by Hadley Wickham and Garrett Grolemund if you need a refresher.
For this demonstration, we will use two (2) synthetic datasets available within the package:
df_household
household-level data (type ?df_household
for more info)df_household_roster
individual-level data (type ?df_household_roster
for more info)library(dplyr) glimpse(df_household)
glimpse(df_household_roster)
define_deprivation
First, we need to create an empty list, and name it deprivation_profile
(but feel free to name it whatever you like).
deprivation_profile <- list()
To create a deprivation profile for each indicator, we use the define_deprivation
function (see ?define_deprivation
) and add to the deprivation_profile
list we created above. Make sure that the deprivation profile for each indicator matches the variable name declared in the specification file.
For this indicator, we use the df_household_roster
dataset. By default, define_deprivation
sets the .collapse = FALSE
. Since we need to collapse it to the household level, we need to set .collapse = TRUE
.
deprivation_profile$nutrition <- df_household_roster |> define_deprivation( .indicator = nutrition, .cutoff = undernourished == 1 & age < 70, .collapse = TRUE )
For child mortality, we use the df_household
dataset. But unlike in nutrition
, we do not need to provide the .collapse
argument since it is not applicable here.
deprivation_profile$child_mortality <- df_household |> define_deprivation( .indicator = child_mortality, .cutoff = with_child_died == 1 )
deprivation_profile$year_schooling <- df_household_roster |> define_deprivation( .indicator = year_schooling, .cutoff = completed_6yrs_schooling == 2, .collapse = TRUE )
deprivation_profile$school_attendance <- df_household_roster |> define_deprivation( .indicator = school_attendance, .cutoff = attending_school == 2 & age %in% c(5:24), .collapse = TRUE )
deprivation_profile$cooking_fuel <- df_household |> define_deprivation( .indicator = cooking_fuel, .cutoff = cooking_fuel %in% c(4:6, 9) )
deprivation_profile$sanitation <- df_household |> define_deprivation( .indicator = sanitation, .cutoff = toilet > 1 )
deprivation_profile$drinking_water <- df_household |> define_deprivation( .indicator = drinking_water, .cutoff = drinking_water == 2 )
deprivation_profile$electricity <- df_household |> define_deprivation( .indicator = electricity, .cutoff = electricity == 2 )
deprivation_profile$housing <- df_household |> define_deprivation( .indicator = housing, .cutoff = roof %in% c(5, 7, 9) | walls %in% c(5, 8, 9, 99) == 2 | floor %in% c(5, 6, 9) )
For this indicator, we need additional transformation.
deprivation_profile$assets <- df_household |> mutate_at(vars(starts_with('asset_')), ~ if_else(. > 0, 1L, 0L)) |> mutate( asset_phone = if_else( (asset_telephone + asset_mobile_phone) > 0, 1L, 0L ) ) |> mutate( with_hh_conveniences = ( asset_tv + asset_phone + asset_computer + asset_animal_cart + asset_bicycle + asset_motorcycle + asset_refrigerator) > 1, with_mobility_assets = (asset_car + asset_truck) > 0 ) |> define_deprivation( .indicator = assets, .cutoff = !(with_hh_conveniences & with_mobility_assets) )
compute_mpi
After completing the deprivation profile, use the compute_mpi
function and pass the deprivation_profile
list as the first argument.
mpi_result <- df_household |> compute_mpi(deprivation_profile) names(mpi_result)
mpi_result$index
mpi_result$index |> rename(Class = 1) |> gt::gt() |> gt::tab_header( title = 'MPI Results using 33% Poverty Cutoff' ) |> gt::fmt_number( columns = 3:5, decimals = 3 ) |> gt::tab_options( table.width = '100%', table.font.size = 12, )
mpi_result$contribution
gtx <- function(.gt, .decimals = 1, .offset = 0) { d01_cp <- 3:4 + .offset d02_cp <- 5:6 + .offset d03_cp <- 7:12 + .offset .gt |> gt::tab_spanner( label = "Health", columns = d01_cp ) |> gt::tab_spanner( label = "Education", columns = d02_cp ) |> gt::tab_spanner( label = "Living Standards", columns = d03_cp ) |> gt::fmt_number( columns = c(d01_cp, d02_cp, d03_cp), decimals = .decimals ) |> gt::tab_options( table.font.size = 12, ) } mpi_result$contribution |> gt::gt() |> gt::tab_header( title = 'Contribution by Dimenstion and Indicator to MPI using 33% Poverty Cutoff' ) |> gtx()
mpi_result$headcount_ratio$uncensored
mpi_result$headcount_ratio$uncensored |> ungroup() |> gt::gt() |> gt::tab_header( title = 'Uncensored Headcount Ratio' ) |> gtx(.decimals = 3)
mpi_result$headcount_ratio$censored
mpi_result$headcount_ratio$censored |> ungroup() |> gt::gt() |> gt::tab_header( title = 'Censored Headcount Ratio using 33% Poverty Cutoff' ) |> gtx(.decimals = 3)
mpi_result$deprivation_matrix$uncensored |> head()
mpi_result$deprivation_matrix$uncensored |> ungroup() |> head() |> rename_all(~ stringr::str_remove(., '^(Health|Education|Living Standards)>')) |> gt::gt() |> gt::tab_header( title = 'Uncensored Deprivation Matrix ' ) |> gtx(.decimals = 0, .offset = 1) |> gt::fmt_number( columns = 3, decimals = 3 )
mpi_result$deprivation_matrix$censored |> head()
mpi_result$deprivation_matrix$censored |> ungroup() |> head() |> rename_all(~ stringr::str_remove(., '^(Health|Education|Living Standards)>')) |> gt::gt() |> gt::tab_header( title = 'Censored Deprivation Matrix using 33% Poverty Cutoff' ) |> gtx(.decimals = 0, .offset = 1) |> gt::fmt_number( columns = 3, decimals = 3 )
Note: Deprivation matrices are included by default when you run compute_mpi
. If you want to exclude these in your output, set .include_deprivation_matrix
equal to FALSE
.
You may also save your output into an Excel file. You may choose to format the output or retain its tidy format by setting the formatted_output
parameter appropriately.
# Formatted output save_mpi(mpi_result, .filename = 'MPI Sample Output') # Not formatted save_mpi(mpi_result, .filename = 'MPI Sample Output (no format)', .formatted_output = FALSE)
# ---------------------------------- # Load MPI specs from the built-in specs file use_global_mpi_specs( .uid = 'uuid', .aggregation = 'class' ) # ---------------------------------- # Create an empty list to store deprivation profile for each indicator deprivation_profile <- list() deprivation_profile$nutrition <- df_household_roster |> define_deprivation( .indicator = nutrition, .cutoff = undernourished == 1 & age < 70, .collapse = TRUE ) deprivation_profile$child_mortality <- df_household |> define_deprivation( .indicator = child_mortality, .cutoff = with_child_died == 1 ) deprivation_profile$year_schooling <- df_household_roster |> define_deprivation( .indicator = year_schooling, .cutoff = completed_6yrs_schooling == 2, .collapse = TRUE ) deprivation_profile$school_attendance <- df_household_roster |> define_deprivation( .indicator = school_attendance, .cutoff = attending_school == 2 & age %in% c(5:24), .collapse = TRUE ) deprivation_profile$cooking_fuel <- df_household |> define_deprivation( .indicator = cooking_fuel, .cutoff = cooking_fuel %in% c(4:6, 9) ) deprivation_profile$sanitation <- df_household |> define_deprivation( .indicator = sanitation, .cutoff = toilet > 1 ) deprivation_profile$drinking_water <- df_household |> define_deprivation( .indicator = drinking_water, .cutoff = drinking_water == 2 ) deprivation_profile$electricity <- df_household |> define_deprivation( .indicator = electricity, .cutoff = electricity == 2 ) deprivation_profile$housing <- df_household |> define_deprivation( .indicator = housing, .cutoff = roof %in% c(5, 7, 9) | walls %in% c(5, 8, 9, 99) == 2 | floor %in% c(5, 6, 9) ) deprivation_profile$assets <- df_household |> dplyr::mutate_at( dplyr::vars(dplyr::starts_with('asset_')), ~ dplyr::if_else(. > 0, 1L, 0L) ) |> dplyr::mutate( asset_phone = dplyr::if_else( (asset_telephone + asset_mobile_phone) > 0, 1L, 0L ) ) |> dplyr::mutate( with_hh_conveniences = ( asset_tv + asset_phone + asset_computer + asset_animal_cart + asset_bicycle + asset_motorcycle + asset_refrigerator) > 1, with_mobility_assets = (asset_car + asset_truck) > 0 ) |> define_deprivation( .indicator = assets, .cutoff = !(with_hh_conveniences & with_mobility_assets) ) # ---------------------------------- # Compute the MPI mpi_result <- df_household |> compute_mpi(deprivation_profile) # ---------------------------------- # You may also save your output into an Excel file # Formatted output # save_mpi(mpi_result, .filename = 'MPI Sample Output', .include_specs = T) # Not formatted save_mpi( mpi_result, .filename = 'MPI Sample Output (no format)', .formatted_output = FALSE, .include_specs = TRUE )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.