Nothing
#' mtrank: Brief overview
#'
#' @description
#' R package \bold{mtrank} enables the estimation of treatment hierarchies in
#' network meta-analysis using a novel frequentist approach based on treatment
#' choice criteria (TCC) and probabilistic ranking models, as described by
#' Evrenoglou et al. (2024). The TCC are defined using a rule based on the
#' smallest worthwhile difference (SWD). Using the defined TCC, the NMA
#' estimates (i.e., treatment effects and standard errors) are first transformed
#' into treatment preferences, indicating either a treatment preference (e.g.,
#' treatment A > treatment B) or a tie (treatment A = treatment B). These
#' treatment preferences are then synthesized using a probabilistic ranking
#' model, which estimates the latent ability parameter of each treatment and
#' produces the final treatment hierarchy. This parameter represents each
#' treatments ability to outperform all the other competing treatments in the
#' network. Here the terms "ability to outperform" indicates the propensity of
#' each treatment to yield clinically important and beneficial effects when
#' compared to all the other treatments in the network. Consequently, larger
#' ability estimates indicate higher positions in the ranking list.
#'
#' @details
#' The R package \bold{mtrank} provides the following functions:
#' \itemize{
#' \item Function \code{\link{tcc}} defines the TCC and produces a treatment
#' preference format based on network meta-analysis estimates.
#' \item Function \code{\link{mtrank}} synthesizes the output of the
#' \code{\link{tcc}} function and estimates the final treatment ability.
#' \item Forest plots are created either for the results of the
#' TCC (\code{\link{forest.tcc}}) or the final ability estimates
#' (\code{\link{forest.mtrank}}).
#' \item Function \code{\link{fitted.mtrank}} uses the ability estimates
#' obtained from \code{\link{mtrank}} to calculate pairwise probabilities
#' that any treatment 'A' can be better, equal, or worse than any other
#' treatment 'B' in the network.
#' \item The function \code{\link{linegraph}} visualizes the output of
#' \code{\link{mtrank}} across different SWD values. It serves as a
#' sensitivity analysis to the initial choice of SWD.
#' }
#'
#' Type \code{help(package = "mtrank")} for a listing of R functions
#' available in \bold{mtrank}.
#'
#' Type \code{citation("mtrank")} on how to cite \bold{mtrank}
#' in publications.
#'
#' To report problems and bugs, please send an email to Theodoros
#' Evrenoglou <theodoros.evrenoglou@uniklinik-freiburg.de>.
#'
#' The development version of \bold{mtrank} is available on GitHub
#' \url{https://github.com/TEvrenoglou/mtrank}.
#'
#' @name mtrank-package
#'
#' @author Theodoros Evrenoglou <theodoros.evrenoglou@@uniklinik-freiburg.de>,
#' Guido Schwarzer <guido.schwarzer@@uniklinik-freiburg.de>
#'
#' @references
#' Evrenoglou T, Nikolakopoulou A, Schwarzer G, Rücker G, Chaimani A (2024):
#' Producing treatment hierarchies in network meta-analysis using probabilistic
#' models and treatment-choice criteria,
#' \url{https://arxiv.org/abs/2406.10612}
#'
#' @keywords package
#'
#' @importFrom meta metagen ci gs forest pairwise
#' @importFrom netmeta netmeta netconnection invmat
#' @importFrom PlackettLuce PlackettLuce itempar rankings as.rankings
#' @importFrom dplyr %>% arrange bind_rows filter select mutate if_else
#' relocate last_col
#' @importFrom magrittr %<>%
#' @importFrom utils packageVersion
#' @importFrom graphics legend segments text par
#' @importFrom stats complete.cases qnorm quantile
#' @importFrom ggplot2 ggplot aes geom_line geom_point theme_minimal
#' xlab ylab ylim scale_x_continuous guides guide_legend
"_PACKAGE"
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.