Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(mtsta)
summ_df <- tibble::tribble( ~Conservation.status, ~tag, ~Number.of.species, "Critically Endangered", "CR", 1L, "Endangered", "EN", 42L, "Vulnerable", "VU", 27L, "Near Threatened", "NT", 20L, "Least Concern", "LC", 29L, "Data Deficient", "DD", 8L, "Not Evaluated", "NE", 0L ) summ_df |> dplyr::select(1,3) |> janitor::adorn_totals() |> knitr::kable()
(Calderón et al. 2002; IUCN 2010; León-Yánez et al. 2011; León et al. 2006; Llamozas et al. 2003; Meneses and Beck 2005).
summ_2 <- tibble::tribble( ~Country, ~CR, ~EN, ~VU, ~NT, ~LC, ~DD, ~Subtotal, ~NE, ~Total, "Ecuador", 2L, 36L, 52L, 9L, 5L, 1L, 105L, 61L, 166L, "Peru", 9L, 31L, 15L, 2L, 3L, 10L, 70L, 50L, 120L, "Colombia", 4L, 5L, 5L, 2L, 1L, 0L, 17L, 60L, 77L, "Bolivia", 0L, 5L, 1L, 0L, 0L, 1L, 7L, 94L, 101L, "Argentina", 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 3L, "Venezuela", 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, "Total endemic", 15L, 77L, 73L, 13L, 9L, 12L, 199L, 268L, 467L, "Regional assessment", 1L, 42L, 27L, 20L, 29L, 8L, 127L, 0L, 127L, "Total Andes", 16L, 119L, 100L, 33L, 38L, 20L, 326L, 268L, 594L ) summ_2 |> knitr::kable()
summarie_3 <- mtsta::mtsta_distribution |> dplyr::select(accepted_name, distribution) |> dplyr::mutate(distribution = dplyr::case_when( stringr::str_detect(distribution, "\\(Bolivia,\\) ") ~ stringr::str_remove(distribution, "\\(Bolivia,\\) "), stringr::str_detect(distribution, "\\(Colombia,\\) ") ~ stringr::str_remove(distribution, "\\(Colombia,\\) "), stringr::str_detect(distribution, "\\(Colombia\\) \\- ") ~ stringr::str_remove(distribution, "\\(Colombia\\) \\- "), stringr::str_detect(distribution, " \\- \\(Peru \\- Venezuela\\)") ~ stringr::str_remove(distribution, " \\- \\(Peru \\- Venezuela\\)"), TRUE ~ distribution )) |> tidyr::separate_rows(distribution, sep = " - ") |> dplyr::group_by(distribution) |> dplyr::summarise(n_species = dplyr::n_distinct(accepted_name))
summarie_3 |> ggplot2::ggplot(ggplot2::aes(forcats::fct_reorder(distribution, n_species, .desc = TRUE), n_species)) + ggplot2::geom_col() + ggplot2::labs(y = "Species per country", x = "Countries") + ggplot2::theme_bw()
The distribution of the 127 species across countries.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.