Description Usage Arguments Details Value Examples
View source: R/roc_auc_with_ci.R
This function uses bootstrap to generate five types of equi-tailed two-sided confidence intervals of ROC-AUC with different required percentages and output a dataframe with AUCs, lower CIs, and higher CIs of all methods and groups.
1 | roc_auc_with_ci(data, conf= 0.95, type='bca', R = 100)
|
data |
A data frame contains true labels of multiple groups and corresponding predictive scores. |
conf |
A scalar contains the required level of confidence intervals, and the default number is 0.95. |
type |
A vector of character strings includes five different types of equi-tailed two-sided nonparametric confidence intervals (e.g., "norm","basic", "stud", "perc", "bca"). |
R |
A scalar contains the number of bootstrap replicates, and the default number is 100. |
A data frame is required for this function as input. This data frame should contains true label (0 - Negative, 1 - Positive) columns named as XX_true (e.g. S1_true, S2_true and S3_true) and predictive scores (continuous) columns named as XX_pred_YY (e.g. S1_pred_SVM, S2_pred_RF). Predictive scores could be probabilities among [0, 1] and other continuous values. For each classifier, the number of columns should be equal to the number of groups of true labels. The order of columns won't affect results.
norm |
Using the normal approximation to calculate the confidence intervals. |
basic |
Using the basic bootstrap method to calculate the confidence intervals. |
stud |
Using the studentized bootstrap method to calculate the confidence intervals. |
perc |
Using the bootstrap percentile method to calculate the confidence intervals. |
bca |
Using the adjusted bootstrap percentile method to calculate the confidence intervals. |
1 2 3 | ## Not run: data(test_data)
roc_auc_with_ci_res <- roc_auc_with_ci(test_data, conf= 0.95, type='bca', R = 100)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.