tests/testthat/_snaps/brms.md

random a

Code
  extract.modmed.mlm.brms(fit.randa, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.417  0.416 0.0396 0.0394 0.343 0.496  1.00    1904.    2675.

random b

Code
  extract.modmed.mlm.brms(fit.randb, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.379  0.378 0.0370 0.0367 0.311 0.454  1.00    1851.    2792.

random a and b

Code
  extract.modmed.mlm.brms(fit.randboth, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.452  0.449 0.0527 0.0519 0.355 0.562  1.00    3377.    3165.

all random

Code
  extract.modmed.mlm.brms(fit.randall, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.460  0.457 0.0545 0.0540 0.362 0.574  1.00    3595.    4071.

moderation of a

Code
  extract.modmed.mlm.brms(fitmoda, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.207  0.202 0.0595 0.0561 0.105 0.338  1.00    1869.    2495.
Code
  extract.modmed.mlm.brms(fitmoda, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.249  0.245 0.0644 0.0622 0.140 0.392  1.00    1831.    2450.
Code
  extract.modmed.mlm.brms(fitmoda, "indirect", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.207  0.202 0.0595 0.0561 0.105 0.338  1.00    1869.    2495.

moderation of b

Code
  extract.modmed.mlm.brms(fitmodb, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.305  0.297 0.0722 0.0676 0.183 0.466  1.00    1376.    2114.
Code
  extract.modmed.mlm.brms(fitmodb, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.189  0.183 0.0569 0.0531 0.0940 0.315  1.00    1445.    2277.
Code
  extract.modmed.mlm.brms(fitmodb, "indirect", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.305  0.297 0.0722 0.0676 0.183 0.466  1.00    1376.    2114.

moderation of a and b

Code
  extract.modmed.mlm.brms(fitmodab, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.270  0.264 0.0673 0.0653 0.153 0.414  1.00    1755.    2173.
Code
  extract.modmed.mlm.brms(fitmodab, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.200  0.195 0.0573 0.0571 0.101 0.324  1.00    1841.    2783.
Code
  extract.modmed.mlm.brms(fitmodab, "indirect.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable       mean median     sd    mad    q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>         <dbl>  <dbl>  <dbl>  <dbl>   <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect.di~ 0.0699 0.0692 0.0319 0.0316 0.00913 0.134  1.00    3093.    2994.
Code
  extract.modmed.mlm.brms(fitmodab, "a")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.285  0.287 0.0746 0.0762 0.138 0.425  1.00    1872.    2625.
Code
  extract.modmed.mlm.brms(fitmodab, "a", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.400  0.401 0.0719 0.0719 0.255 0.539  1.00    1856.    2509.
Code
  extract.modmed.mlm.brms(fitmodab, "a.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable   mean median     sd    mad   q2.5   q97.5  rhat ess_bulk ess_tail
    <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl> <dbl>    <dbl>    <dbl>
  1 a.diff   -0.115 -0.116 0.0485 0.0483 -0.209 -0.0225  1.00    9128.    3107.
Code
  extract.modmed.mlm.brms(fitmodab, "b")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.540  0.540 0.0818 0.0816 0.378 0.700  1.00    2026.    2436.
Code
  extract.modmed.mlm.brms(fitmodab, "b", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.210  0.208 0.0801 0.0778 0.0541 0.372  1.00    2147.    2347.
Code
  extract.modmed.mlm.brms(fitmodab, "b.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b.diff   0.330  0.329 0.0415 0.0410 0.249 0.412  1.00    7588.    3054.

moderation of a and b, re for a int

Code
  extract.modmed.mlm.brms(fitmodab2, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.289  0.282 0.0651 0.0632 0.175 0.429  1.00    1575.    2408.
Code
  extract.modmed.mlm.brms(fitmodab2, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.167  0.163 0.0608 0.0595 0.0624 0.295  1.00    1952.    2414.
Code
  extract.modmed.mlm.brms(fitmodab2, "indirect.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable       mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>         <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect.diff 0.121  0.119 0.0450 0.0427 0.0371 0.215  1.00    2731.    2848.
Code
  extract.modmed.mlm.brms(fitmodab2, "a")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.289  0.289 0.0690 0.0692 0.152 0.418  1.00    1533.    2508.
Code
  extract.modmed.mlm.brms(fitmodab2, "a", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.389  0.391 0.0846 0.0839 0.223 0.550  1.00    1741.    2579.
Code
  extract.modmed.mlm.brms(fitmodab2, "a.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable    mean  median     sd    mad   q2.5  q97.5  rhat ess_bulk ess_tail
    <chr>      <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl>    <dbl>    <dbl>
  1 a.diff   -0.0996 -0.0991 0.0714 0.0701 -0.237 0.0428  1.00    2846.    3004.
Code
  extract.modmed.mlm.brms(fitmodab2, "b")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.538  0.537 0.0795 0.0782 0.380 0.697  1.00    1560.    2215.
Code
  extract.modmed.mlm.brms(fitmodab2, "b", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.215  0.216 0.0789 0.0775 0.0594 0.368  1.00    1645.    2359.
Code
  extract.modmed.mlm.brms(fitmodab2, "b.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b.diff   0.323  0.322 0.0418 0.0430 0.241 0.403  1.00    6088.    3413.

moderation of a and b, re for b int

Code
  extract.modmed.mlm.brms(fitmodab3, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.277  0.269 0.0708 0.0677 0.159 0.433  1.00    1188.    1855.
Code
  extract.modmed.mlm.brms(fitmodab3, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.193  0.188 0.0658 0.0610 0.0762 0.343  1.00    1536.    2218.
Code
  extract.modmed.mlm.brms(fitmodab3, "indirect.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable       mean median     sd    mad    q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>         <dbl>  <dbl>  <dbl>  <dbl>   <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect.di~ 0.0842 0.0813 0.0557 0.0527 -0.0171 0.202  1.00    1828.    2718.
Code
  extract.modmed.mlm.brms(fitmodab3, "a")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.282  0.283 0.0780 0.0786 0.128 0.434  1.00    1212.    1985.
Code
  extract.modmed.mlm.brms(fitmodab3, "a", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.402  0.404 0.0746 0.0729 0.252 0.549  1.00    1244.    2255.
Code
  extract.modmed.mlm.brms(fitmodab3, "a.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable   mean median     sd    mad   q2.5   q97.5  rhat ess_bulk ess_tail
    <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl> <dbl>    <dbl>    <dbl>
  1 a.diff   -0.120 -0.120 0.0487 0.0480 -0.215 -0.0231  1.00    4625.    2999.
Code
  extract.modmed.mlm.brms(fitmodab3, "b")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.572  0.572 0.0754 0.0736 0.421 0.718  1.00    1293.    1840.
Code
  extract.modmed.mlm.brms(fitmodab3, "b", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.226  0.226 0.0909 0.0894 0.0464 0.400  1.00    1610.    2264.
Code
  extract.modmed.mlm.brms(fitmodab3, "b.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b.diff   0.346  0.346 0.0781 0.0782 0.194 0.500  1.00    2089.    2632.

moderation of a and b, re for both

Code
  extract.modmed.mlm.brms(fitmodab4, "indirect")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.283  0.277 0.0638 0.0612 0.178 0.426  1.00    1217.    2245.
Code
  extract.modmed.mlm.brms(fitmodab4, "indirect", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect 0.164  0.159 0.0716 0.0686 0.0377 0.314  1.00    1562.    2527.
Code
  extract.modmed.mlm.brms(fitmodab4, "indirect.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable      mean median     sd    mad     q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>        <dbl>  <dbl>  <dbl>  <dbl>    <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 indirect.di~ 0.119  0.118 0.0627 0.0593 -6.82e-4 0.246  1.00    1965.    2727.
Code
  extract.modmed.mlm.brms(fitmodab4, "a")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.287  0.288 0.0693 0.0676 0.150 0.425  1.00    1298.    2323.
Code
  extract.modmed.mlm.brms(fitmodab4, "a", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 a        0.394  0.393 0.0867 0.0854 0.221 0.561  1.00    1623.    2346.
Code
  extract.modmed.mlm.brms(fitmodab4, "a.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable   mean median     sd    mad   q2.5  q97.5  rhat ess_bulk ess_tail
    <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl>    <dbl>    <dbl>
  1 a.diff   -0.106 -0.106 0.0728 0.0720 -0.253 0.0359  1.00    2485.    2941.
Code
  extract.modmed.mlm.brms(fitmodab4, "b")$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.568  0.568 0.0755 0.0748 0.425 0.717  1.00    1655.    2542.
Code
  extract.modmed.mlm.brms(fitmodab4, "b", modval1 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad   q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b        0.236  0.235 0.0910 0.0901 0.0590 0.414  1.00    1644.    2662.
Code
  extract.modmed.mlm.brms(fitmodab4, "b.diff", modval1 = 0, modval2 = 1)$CI
Output
  # A tibble: 1 x 10
    variable  mean median     sd    mad  q2.5 q97.5  rhat ess_bulk ess_tail
    <chr>    <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
  1 b.diff   0.332  0.333 0.0777 0.0771 0.177 0.484  1.00    2020.    2693.


Try the multilevelmediation package in your browser

Any scripts or data that you put into this service are public.

multilevelmediation documentation built on April 4, 2025, 4:33 a.m.