| heck2017_raw | R Documentation |
Raw data with multiattribute decisions (Heck, Hilbig & Moshagen, 2017).
heck2017_raw
A data frame with 21 variables:
vpID code of participant
trialTrial index
patternNumber of cue pattern
ttbPrediction of take-the-best (TTB)
eqwPrediction of equal weights (EQW)
waddPrediction of weighted additive (WADD)
logoddsdiffLog-odds difference (WADDprob)
ttbstepsNumber of TTB steps (TTBprob)
itemtypeItem type as in paper
reversedorderWhether item is reversed
choiceChoice
rtResponse time
choice.revChoice (reversed)
a1Value of Cue 1 for Option A
a2Value of Cue 2 for Option A
a3Value of Cue 3 for Option A
a4Value of Cue 4 for Option A
b1Value of Cue 1 for Option B
b2Value of Cue 2 for Option B
b3Value of Cue 3 for Option B
b4Value of Cue 4 for Option B
Each participant made 40 choices for each of 4 item types with four cues
(with validities .9, .8, .7, and .6).
Individual choice freqeuncies are available as heck2017
Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26-40. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.cogpsych.2017.05.003")}
heck2017 for the aggregated choice frequencies per item type.
data(heck2017_raw)
head(heck2017_raw)
# get cue values, validities, and predictions
cueA <- heck2017_raw[, paste0("a", 1:4)]
cueB <- heck2017_raw[, paste0("b", 1:4)]
v <- c(.9, .8, .7, .6)
strat <- strategy_multiattribute(
cueA, cueB, v,
c(
"TTB", "TTBprob", "WADD",
"WADDprob", "EQW", "GUESS"
)
)
# get unique item types
types <- strategy_unique(strat)
types$unique
# get table of choice frequencies for analysis
freq <- with(
heck2017_raw,
table(vp, types$item_type, choice)
)
freqB <- freq[, 4:1, 1] + # reversed items: Option A
freq[, 5:8, 2] # non-rev. items: Option B
head(40 - freqB)
data(heck2017)
head(heck2017) # same frequencies (different order)
# strategy classification
pp <- strategy_postprob(
freqB[1:4, ], rep(40, 4),
types$strategies
)
round(pp, 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.