The effects of the site may severely bias the accuracy of a multisite machine-learning model, even if the analysts removed them when fitting the model in the 'training set' and applying the model in the 'test set' (Solanes et al., Neuroimage 2023, 265:119800). This simple R package estimates the accuracy of a multisite machine-learning model unbiasedly, as described in (Solanes et al., Psychiatry Research: Neuroimaging 2021, 314:111313). It currently supports the estimation of sensitivity, specificity, balanced accuracy (for binary or multinomial variables), the area under the curve, correlation, mean squarer error, and hazard ratio for binomial, multinomial, gaussian, and survival (time-to-event) outcomes.
Package details |
|
---|---|
Author | Joaquim Radua [aut, cre] (<https://orcid.org/0000-0003-1240-5438>) |
Maintainer | Joaquim Radua <quimradua@gmail.com> |
License | GPL-3 |
Version | 1.3 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.