Pre-processing pipelines in multiblock

knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width=6, fig.height=4)
library(multivarious)
library(dplyr) # Needed for %>% and tibble manipulation
library(tibble)
library(ggplot2)

1. Why a pipeline at all?

Code that mutates data in place (e.g. scale(X)) is convenient in a script but dangerous inside reusable functions:

The grammar is tiny:

| Verb | Role | Typical Call | |---------------|--------------------------------|------------------------------------| | pass() | do nothing (placeholder) | fit(pass(), X) | | center() | subtract column means | fit(center(), X) | | standardize() | centre and scale to unit SD | fit(standardize(), X) | | colscale() | user-supplied weights/scaling | fit(colscale(type="z"), X) | | ... | (write your own) | any function returning a node |

The fit() verb is the bridge between defining your preprocessing steps (the recipe) and actually applying them. You call fit() on your recipe, providing your training dataset. fit() calculates and stores the necessary parameters (e.g., column means, standard deviations) from this data, returning a fitted pre-processor object.

Once you have a fitted preprocessor object, it exposes three key methods:

| Method | Role | Typical Use Case | |-----------------------|------------------------------------------------|------------------| | fit_transform(prep, X) | fits parameters and transforms X | Training set (convenience) | | transform(pp, Xnew)| applies stored parameters to new data | Test/new data | | inverse_transform(pp, Y) | back-transforms data using stored parameters | Interpreting results |

2. The 60-second tour

2.1 No-op and sanity check

set.seed(0)
X <- matrix(rnorm(10*4), 10, 4)

pp_pass <- fit(pass(), X)        # == do nothing
Xp_pass <- transform(pp_pass, X) # applies nothing, just copies X
all.equal(Xp_pass, X)            # TRUE

2.2 Centre → standardise

# Fit the preprocessor (calculates means & SDs from X) and transform
pp_std <- fit(standardize(), X)
Xs     <- transform(pp_std, X)

# Check results
all(abs(colMeans(Xs)) < 1e-12)   # TRUE: data is centered
round(apply(Xs, 2, sd), 6)       # ~1: data is scaled

# Check back-transform
all.equal(inverse_transform(pp_std, Xs), X) # TRUE

2.3 Partial input (region-of-interest)

Imagine a sensor fails and you only observe columns 2 and 4:

X_cols24 <- X[, c(2,4), drop=FALSE] # Keep as matrix

# Apply the *already fitted* standardizer using only columns 2 & 4
Xs_cols24 <- transform(pp_std, X_cols24, colind = c(2,4))

# Compare original columns 2, 4 with their transformed versions
head(cbind(X_cols24, Xs_cols24))

# Back-transform works too
X_rev_cols24 <- inverse_transform(pp_std, Xs_cols24, colind = c(2,4))
all.equal(X_rev_cols24, X_cols24) # TRUE

3. Composing preprocessing steps

Because preprocessing steps nest, you can build pipelines by composing them:

# Define a pipeline: center, then scale to unit variance
# Fit the pipeline to the data
pp_pipe <- fit(standardize(), X)

# Apply the pipeline
Xp_pipe <- transform(pp_pipe, X)

3.1 Quick visual

# Compare first column before and after pipeline
df_pipe <- tibble(raw = X[,1],   processed = Xp_pipe[,1])

ggplot(df_pipe) +
  geom_density(aes(raw), colour = "red", linewidth = 1) +
  geom_density(aes(processed), colour = "blue", linewidth = 1) +
  ggtitle("Column 1 Density: Before (red) and After (blue) Pipeline") +
  theme_minimal()

4. Block-wise concatenation

Large multiblock models often want different preprocessing per block. concat_pre_processors() glues several already fitted pipelines into one wide transformer that understands global column indices.

# Two fake blocks with distinct scales
X1 <- matrix(rnorm(10*5 , 10 , 5), 10, 5)   # block 1: high mean
X2 <- matrix(rnorm(10*7 ,  2 , 7), 10, 7)   # block 2: low mean

# Fit separate preprocessors for each block
p1 <- fit(center(), X1)
p2 <- fit(standardize(), X2)

# Transform each block
X1p <- transform(p1, X1)
X2p <- transform(p2, X2)

# Concatenate the *fitted* preprocessors
block_indices_list = list(1:5, 6:12)
pp_concat <- concat_pre_processors(
  list(p1, p2),
  block_indices = block_indices_list
)

# Apply the concatenated preprocessor to the combined data
X_combined <- cbind(X1, X2)
X_combined_p <- transform(pp_concat, X_combined)

# Check means (block 1 only centered, block 2 standardized)
round(colMeans(X_combined_p), 2)

# Need only block 1 processed later? Use colind with global indices
X1_later_p <- transform(pp_concat, X1, colind = block_indices_list[[1]])
all.equal(X1_later_p, X1p) # TRUE

# Need block 2 processed?
X2_later_p <- transform(pp_concat, X2, colind = block_indices_list[[2]])
all.equal(X2_later_p, X2p) # TRUE

Check reversibility of concatenated pipeline

back_combined <- inverse_transform(pp_concat, X_combined_p)

# Compare first few rows/cols of original vs round-trip
knitr::kable(
  head(cbind(orig = X_combined[, 1:6], recon = back_combined[, 1:6]), 3),
  digits = 2,
  caption = "First 3 rows, columns 1-6: Original vs Reconstructed"
)

all.equal(X_combined, back_combined) # TRUE

5. Inside the weeds (for authors & power users)

| Helper | Purpose | |---------------------------|----------------------------------------------------------------------| | fresh(pp) | return the un-fitted recipe skeleton. Crucial for tasks like cross-validation (CV), as it allows you to re-fit() the pipeline using only the current training fold's data, preventing data leakage from other folds or the test set. | | concat_pre_processors() | build one big transformer out of already-fitted pieces. | | pass() vs fit(pass(), X) | pass() is a recipe; fit(pass(), X) is a fitted identity transformer. | | caching | Fitted preprocessor objects store parameters (means, SDs) for fast re-application. |

You rarely need to interact with these helpers directly; they exist so model-writers (e.g. new PCA flavours) can avoid boiler-plate.

6. Key take-aways

Happy projecting!


Session info

sessionInfo()


Try the multivarious package in your browser

Any scripts or data that you put into this service are public.

multivarious documentation built on Jan. 22, 2026, 1:06 a.m.