Nothing
##
## Data.R
##
## Author: Jacob O. Wobbrock
##
#' @title
#' Between-subjects 2×2 design with dichotomous response data
#'
#' @description
#' This generic synthetic long-format data set has a dichotomous response \code{Y}
#' and two factors \code{X1} and \code{X2}. The response has categories
#' \code{\{yes, no\}}. Factor \code{X1} has levels \code{\{a, b\}}, and factor
#' \code{X2} has levels \code{\{c, d\}}. It also has a \code{PId} column for a participant
#' identifier. Each participant appears on only one row.
#'
#' @name bs2
#' @docType data
#' @format A data frame with 60 observations on the following 4 variables:
#' \describe{
#' \item{PId}{a participant identifier with levels \code{"1"} ... \code{"60"}}
#' \item{X1}{a between-subjects factor with levels \code{"a"}, \code{"b"}}
#' \item{X2}{a between-subjects factor with levels \code{"c"}, \code{"d"}}
#' \item{Y}{a dichotomous response with categories \code{"yes"}, \code{"no"}}
#' }
#'
#' @seealso See \code{\link{glm.mp}} and \code{\link{glm.mp.con}} for complete examples.
#'
#' @keywords datasets
#' @examples
#' library(multpois)
#' data(bs2, package="multpois")
#'
#' bs2$PId = factor(bs2$PId)
#' bs2$Y = factor(bs2$Y, levels=c("yes","no"))
#' bs2$X1 = factor(bs2$X1)
#' bs2$X2 = factor(bs2$X2)
#' contrasts(bs2$X1) <- "contr.sum"
#' contrasts(bs2$X2) <- "contr.sum"
#'
#' m = glm.mp(Y ~ X1*X2, data=bs2)
#' Anova.mp(m, type=3)
#' glm.mp.con(m, pairwise ~ X1*X2, adjust="holm")
#'
NULL
#' @title
#' Between-subjects 2×2 design with polytomous response data
#'
#' @description
#' This generic synthetic long-format data set has a polytomous response \code{Y}
#' and two factors \code{X1} and \code{X2}. The response has categories
#' \code{\{yes, no, maybe\}}. Factor \code{X1} has levels \code{\{a, b\}}, and factor
#' \code{X2} has levels \code{\{c, d\}}. It also has a \code{PId} column for a participant
#' identifier. Each participant appears on only one row.
#'
#' @name bs3
#' @docType data
#' @format A data frame with 60 observations on the following 4 variables:
#' \describe{
#' \item{PId}{a participant identifier with levels \code{"1"} ... \code{"60"}}
#' \item{X1}{a between-subjects factor with levels \code{"a"}, \code{"b"}}
#' \item{X2}{a between-subjects factor with levels \code{"c"}, \code{"d"}}
#' \item{Y}{a polytomous response with categories \code{"yes"}, \code{"no"}, \code{"maybe"}}
#' }
#'
#' @seealso See \code{\link{glm.mp}} and \code{\link{glm.mp.con}} for complete examples.
#'
#' @keywords datasets
#' @examples
#' library(multpois)
#' data(bs3, package="multpois")
#'
#' bs3$PId = factor(bs3$PId)
#' bs3$Y = factor(bs3$Y, levels=c("yes","no","maybe"))
#' bs3$X1 = factor(bs3$X1)
#' bs3$X2 = factor(bs3$X2)
#' contrasts(bs3$X1) <- "contr.sum"
#' contrasts(bs3$X2) <- "contr.sum"
#'
#' m = glm.mp(Y ~ X1*X2, data=bs3)
#' Anova.mp(m, type=3)
#' glm.mp.con(m, pairwise ~ X1*X2, adjust="holm")
#'
NULL
#' @title
#' Within-subjects 2×2 design with dichotomous response data
#'
#' @description
#' This generic synthetic long-format data set has a dichotomous response \code{Y}
#' and two factors \code{X1} and \code{X2}. The response has categories \code{\{yes, no\}}.
#' Factor \code{X1} has levels \code{\{a, b\}}, and factor \code{X2} has levels
#' \code{\{c, d\}}. It also has a \code{PId} column for a participant identifier.
#' Participant identifiers are repeated across rows.
#'
#' @name ws2
#' @docType data
#' @format A data frame with 60 observations on the following 4 variables:
#' \describe{
#' \item{PId}{a participant identifier with levels \code{"1"} ... \code{"15"}}
#' \item{X1}{a within-subjects factor with levels \code{"a"}, \code{"b"}}
#' \item{X2}{a within-subjects factor with levels \code{"c"}, \code{"d"}}
#' \item{Y}{a dichotomous response with categories \code{"yes"}, \code{"no"}}
#' }
#'
#' @seealso See \code{\link{glmer.mp}} and \code{\link{glmer.mp.con}} for complete examples.
#'
#' @keywords datasets
#' @examples
#' library(multpois)
#' data(ws2, package="multpois")
#'
#' ws2$PId = factor(ws2$PId)
#' ws2$Y = factor(ws2$Y, levels=c("yes","no"))
#' ws2$X1 = factor(ws2$X1)
#' ws2$X2 = factor(ws2$X2)
#' contrasts(ws2$X1) <- "contr.sum"
#' contrasts(ws2$X2) <- "contr.sum"
#'
#' m = glmer.mp(Y ~ X1*X2 + (1|PId), data=ws2)
#' Anova.mp(m, type=3)
#' glmer.mp.con(m, pairwise ~ X1*X2, adjust="holm")
#'
NULL
#' @title
#' Within-subjects 2×2 design with polytomous response data
#'
#' @description
#' This generic synthetic long-format data set has a polytomous response \code{Y}
#' and two factors \code{X1} and \code{X2}. The response has categories
#' \code{\{yes, no, maybe\}}. Factor \code{X1} has levels \code{\{a, b\}}, and factor
#' \code{X2} has levels \code{\{c, d\}}. It also has a \code{PId} column for a
#' participant identifier. Participant identifiers are repeated across rows.
#'
#' @name ws3
#' @docType data
#' @format A data frame with 60 observations on the following 4 variables:
#' \describe{
#' \item{PId}{a participant identifier with levels \code{"1"} ... \code{"15"}}
#' \item{X1}{a within-subjects factor with levels \code{"a"}, \code{"b"}}
#' \item{X2}{a within-subjects factor with levels \code{"c"}, \code{"d"}}
#' \item{Y}{a polytomous response with categories \code{"yes"}, \code{"no"}, \code{"maybe"}}
#' }
#'
#' @seealso See \code{\link{glmer.mp}} and \code{\link{glmer.mp.con}} for complete examples.
#'
#' @keywords datasets
#' @examples
#' \donttest{
#' library(multpois)
#' data(ws3, package="multpois")
#'
#' ws3$PId = factor(ws3$PId)
#' ws3$Y = factor(ws3$Y, levels=c("yes","no","maybe"))
#' ws3$X1 = factor(ws3$X1)
#' ws3$X2 = factor(ws3$X2)
#' contrasts(ws3$X1) <- "contr.sum"
#' contrasts(ws3$X2) <- "contr.sum"
#'
#' m = glmer.mp(Y ~ X1*X2 + (1|PId), data=ws3)
#' Anova.mp(m, type=3)
#' glmer.mp.con(m, pairwise ~ X1*X2, adjust="holm")
#' }
#'
NULL
#' @title
#' Mixed factorial 2×2 design with polytomous response data
#'
#' @description
#' This synthetic long-format data set represents a survey of 40 respondents about their
#' favorite ice cream flavors. Twenty of the respondents were adults and 20 were children.
#' They were asked four times over the course of a year, once in the middle of each season
#' (fall, winter, spring, summer), for their favorite ice cream flavor in that season.
#'
#' This data set has a polytomous response \code{Pref} and two factors,
#' \code{Age} and \code{Season}. The response \code{Pref} has the unordered categories
#' \code{\{vanilla, chocolate, strawberry\}}. Factor \code{Age} has levels
#' \code{\{adult, child\}}. Factor \code{Season} has levels \code{\{fall, winter, spring, summer\}}.
#' It also has a \code{PId} column for a participant identifier. Each participant identifier is repeated
#' four times, once for each season.
#'
#' @name icecream
#' @docType data
#' @format A data frame with 160 observations on the following 4 variables:
#' \describe{
#' \item{PId}{a participant identifier with levels \code{"1"} ... \code{"40"}}
#' \item{Age}{a between-subjects factor with levels \code{"adult"}, \code{"child"}}
#' \item{Season}{a within-subjects factor with levels \code{"fall"}, \code{"winter"}, \code{"spring"}, \code{"summer"}}
#' \item{Pref}{a polytomous response with categories \code{"vanilla"}, \code{"chocolate"}, \code{"strawberry"}}
#' }
#'
#' @seealso See \code{vignette("multpois", package="multpois")} for a complete analysis of this data set.
#'
#' @keywords datasets
#' @examples
#' \donttest{
#' library(multpois)
#' data(icecream, package="multpois")
#'
#' icecream$PId = factor(icecream$PId)
#' icecream$Pref = factor(icecream$Pref, levels=c("vanilla","chocolate","strawberry"))
#' icecream$Age = factor(icecream$Age, levels=c("adult","child"))
#' icecream$Season = factor(icecream$Season, levels=c("fall","winter","spring","summer"))
#' contrasts(icecream$Age) <- "contr.sum"
#' contrasts(icecream$Season) <- "contr.sum"
#'
#' m = glmer.mp(Pref ~ Age*Season + (1|PId), data=icecream)
#' Anova.mp(m, type=3)
#' glmer.mp.con(m, pairwise ~ Age*Season, adjust="holm")
#' }
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.