Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(musclesyneRgies)
## ---- eval = FALSE------------------------------------------------------------
# # Load the built-in example data set
# data("FILT_EMG")
#
# # Create cluster for parallel computing if not already done
# clusters <- objects()
#
# if (sum(grepl("^cl$", clusters)) == 0) {
# # Decide how many processor threads have to be excluded from the cluster
# # It is a good idea to leave at least one free, so that the machine can be
# # used during computation
# cl <- parallel::makeCluster(max(1, parallel::detectCores() - 1))
# }
# # Extract synergies in parallel (will speed up computation only for larger data sets)
# # with a useful progress bar from `pbapply`
# SYNS <- pbapply::pblapply(FILT_EMG, musclesyneRgies::synsNMF, cl = cl)
#
# parallel::stopCluster(cl)
## -----------------------------------------------------------------------------
# Thirty-cycle locomotor primitive from Santuz & Akay (2020)
data(primitive)
# HFD with k_max = 10 to consider only the most linear part of the log-log plot
# (it's the default value for this function anyway)
Higuchi_fd <- HFD(primitive$signal, k_max = 10)$Higuchi
message("Higuchi's fractal dimension: ", round(Higuchi_fd, 3))
# H with min_win = 200 points, which is the length of each cycle
Hurst_exp <- Hurst(primitive$signal, min_win = max(primitive$time))$Hurst
message("Hurst exponent: ", round(Hurst_exp, 3))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.