R/dmixn.R

Defines functions dmixn

Documented in dmixn

##############################################################
#' Fast density computation for mixture of multivariate normal distributions.
#'
#' @param X matrix n by d where each row is a d dimensional random vector. Alternatively \code{X} can be a d-dimensional vector.
#' @param mu an (m x d) matrix, where m is the number of mixture components.
#' @param sigma as list of m covariance matrices (d x d) on for each mixture component. 
#'              Alternatively it can be a list of m cholesky decomposition of the covariance. 
#'              In that case \code{isChol} should be set to \code{TRUE}.
#' @param w vector of length m, containing the weights of the mixture components.
#' @param log boolean set to true the logarithm of the pdf is required.
#' @param ncores Number of cores used. The parallelization will take place only if OpenMP is supported.
#' @param isChol boolean set to true is \code{sigma} is the cholesky decomposition of the covariance matrix.
#' @param A an (optional) numeric matrix of dimension (m x d), which will be used to store the evaluations of each mixture
#'        density over each mixture component. It is useful when m and n are large and one wants to call \code{dmixt()} 
#'        several times, without reallocating memory for the whole matrix each time. NB1: \code{A} will be modified, 
#'        not copied! NB2: the element of \code{A} must be of class "numeric".
#' @return A vector of length n where the i-the entry contains the pdf of the i-th random vector (i.e. the i-th row of \code{X}).
#' @details NB: at the moment the parallelization does not work properly on Solaris OS when \code{ncores>1}. Hence, \code{dmixt()} checks if the OS 
#'          is Solaris and, if this the case, it imposes \code{ncores==1}. 
#' @author Matteo Fasiolo <matteo.fasiolo@@gmail.com>.
#' @examples
#' #### 1) Example use
#' # Set up mixture density
#' mu <- matrix(c(1, 2, 10, 20), 2, 2, byrow = TRUE)
#' sigma <- list(diag(c(1, 10)), matrix(c(1, -0.9, -0.9, 1), 2, 2))
#' w <- c(0.1, 0.9)
#' 
#' # Simulate
#' X <- rmixn(1e4, mu, sigma, w)
#' 
#' # Evaluate density
#' ds <- dmixn(X, mu, sigma, w = w)
#' head(ds)
#' 
#' ##### 2) More complicated example
#' # Define mixture
#' set.seed(5135)
#' N <- 10000
#' d <- 2
#' w <- rep(1, 2) / 2
#' mu <- matrix(c(0, 0, 2, 3), 2, 2, byrow = TRUE) 
#' sigma <- list(matrix(c(1, 0, 0, 2), 2, 2), matrix(c(1, -0.9, -0.9, 1), 2, 2)) 
#' 
#' # Simulate random variables
#' X <- rmixn(N, mu, sigma, w = w, retInd = TRUE)
#' 
#' # Plot mixture density
#' np <- 100
#' xvals <- seq(min(X[ , 1]), max(X[ , 1]), length.out = np)
#' yvals <- seq(min(X[ , 2]), max(X[ , 2]), length.out = np)
#' theGrid <- expand.grid(xvals, yvals) 
#' theGrid <- as.matrix(theGrid)
#' dens <- dmixn(theGrid, mu, sigma, w = w)
#' plot(X, pch = '.', col = attr(X, "index")+1)
#' contour(x = xvals, y = yvals, z = matrix(dens, np, np),
#'         levels = c(0.002, 0.01, 0.02, 0.04, 0.08, 0.15 ), add = TRUE, lwd = 2)
#' 
#' @export dmixn
#'
dmixn <- function(X, mu, sigma, w, log = FALSE, ncores = 1, isChol = FALSE, A = NULL)
{
  dmixt(X = X, 
        mu = mu, 
        sigma = sigma,
        df = Inf,
        w = w, 
        log = log, 
        ncores = ncores, 
        isChol = isChol, 
        A = A)
}

Try the mvnfast package in your browser

Any scripts or data that you put into this service are public.

mvnfast documentation built on March 7, 2023, 6:56 p.m.