knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(mxsem)
The core function of mxsem is to create a parameter table, where all loadings,
regressions, and (co-)variances are specified. This parameter table is then used
to set up an mxModel with the mxPath
-function. It can be useful to
visually inspect the parameter table created by mxsem. To this end, set
the return_parameter_table
-argument to TRUE
:
library(mxsem) model <- ' # latent variable definitions ind60 =~ x1 + x2 + x3 dem60 =~ y1 + a1*y2 + b*y3 + c1*y4 dem65 =~ y5 + a2*y6 + b*y7 + c2*y8 # regressions dem60 ~ g1*ind60 dem65 ~ g2*ind60 + g3*dem60 # residual correlations y1 ~~ y5 y2 ~~ y4 + y6 y3 ~~ y7 y4 ~~ y8 y6 ~~ y8 ! delta_a ! g1g3 a2 := a1 + delta_a g1g3 := g1*g3 ' model_list <- mxsem(model = model, data = OpenMx::Bollen, return_parameter_table = TRUE) print(model_list$parameter_table)
The element parameter_table$parameter_table
specifies all loadings (op
is =~
),
regressions (op
is ~
), and (co-)variances (op
is ~~
). The modifier
specifies
parameter labels, lbound
is the lower bound and ubound
is the upper bound for
parameters. Finally, free
specifies if a parameter is estimated (TRUE
) or
fixed (FALSE
).
If there are algebras, these are listed in the parameter_table$algebras
data.frame.
Note that the new parameters delta_a
and g1g3
used in these algebras are listed in
parameter_table$new_parameters
, while parameter_table$new_parameters_free
specifies for each of these new parameters if they are free or fixed. In this case
g1g3
is fixed because it is the product of two other parameters.
The variables
specify which of the variables are manifest (observed) and which
are latent (unobserved). Each manifest variable must also be found in the data set.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.