R/n1qn1.R

Defines functions n1qn1 .n1qn1ptr

Documented in n1qn1 .n1qn1ptr

#' This gives the function pointers in the n1qn1 library
#'
#' Using this will allow C-level linking by function pointers instead
#' of abi.
#'
#' @return list of pointers to the n1qn1 functions
#'
#' @export
#'
#' @author Matthew L. Fidler
#'
#' @examples
#'
#' .n1qn1ptr()
#'
.n1qn1ptr <- function() {
  .Call(`_n1qn1_ptr`, PACKAGE = "n1qn1")
}


##' n1qn1 optimization
##'
##' This is an R port of the n1qn1 optimization procedure in scilab.
##'
##' @param call_eval Objective function
##' @param call_grad Gradient Function
##' @param vars Initial starting point for line search
##' @param environment Environment where call_eval/call_grad are
##'     evaluated.
##' @param ... Ignored additional parameters.
##' @param epsilon Precision of estimate
##' @param max_iterations Number of iterations
##' @param nsim Number of function evaluations
##' @param imp Verbosity of messages.
##' @param invisible boolean to control if the output of the minimizer
##'     is suppressed.
##' @param zm Prior Hessian (in compressed format; This format is
##'     output in \code{c.hess}).
##' @param restart Is this an estimation restart?
##' @param assign Assign hessian to c.hess in environment environment?
##'     (Default FALSE)
##' @param print.functions Boolean to control if the function value
##'     and parameter estimates are echoed every time a function is
##'     called.
##'
##' @return The return value is a list with the following elements:
##'     \itemize{
##'        \item \code{value} The value at the minimized function.
##'        \item \code{par} The parameter value that minimized the function.
##'        \item \code{H} The estimated Hessian at the final parameter estimate.
##'        \item \code{c.hess} Compressed Hessian for saving curvature.
##'        \item \code{n.fn} Number of function evaluations
##'        \item \code{n.gr} Number of gradient evaluations
##'      }
##' @author C. Lemarechal, Stephen L. Campbell, Jean-Philippe
##'     Chancelier, Ramine Nikoukhah, Wenping Wang & Matthew L. Fidler
##' @examples
##'
##' ## Rosenbrock's banana function
##' n=3; p=100
##'
##' fr = function(x)
##' {
##'     f=1.0
##'     for(i in 2:n) {
##'         f=f+p*(x[i]-x[i-1]**2)**2+(1.0-x[i])**2
##'     }
##'     f
##' }
##'
##' grr = function(x)
##' {
##'     g = double(n)
##'     g[1]=-4.0*p*(x[2]-x[1]**2)*x[1]
##'     if(n>2) {
##'         for(i in 2:(n-1)) {
##'             g[i]=2.0*p*(x[i]-x[i-1]**2)-4.0*p*(x[i+1]-x[i]**2)*x[i]-2.0*(1.0-x[i])
##'         }
##'     }
##'     g[n]=2.0*p*(x[n]-x[n-1]**2)-2.0*(1.0-x[n])
##'     g
##' }
##'
##' x = c(1.02,1.02,1.02)
##' eps=1e-3
##' n=length(x); niter=100L; nsim=100L; imp=3L;
##' nzm=as.integer(n*(n+13L)/2L)
##' zm=double(nzm)
##'
##' (op1 <- n1qn1(fr, grr, x, imp=3))
##'
##' ## Note there are 40 function calls and 40 gradient calls in the above optimization
##'
##' ## Now assume we know something about the Hessian:
##' c.hess <- c(797.861115,
##'             -393.801473,
##'             -2.795134,
##'             991.271179,
##'             -395.382900,
##'             200.024349)
##' c.hess <- c(c.hess, rep(0, 24 - length(c.hess)))
##'
##' (op2 <- n1qn1(fr, grr, x,imp=3, zm=c.hess))
##'
##' ## Note with this knowledge, there were only 29 function/gradient calls
##'
##' (op3 <- n1qn1(fr, grr, x, imp=3, zm=op1$c.hess))
##'
##' ## The number of function evaluations is still reduced because the Hessian
##' ## is closer to what it should be than the initial guess.
##'
##' ## With certain optimization procedures this can be helpful in reducing the
##' ## Optimization time.
##'
##' @export
##' @importFrom Rcpp evalCpp
##' @useDynLib n1qn1, .registration=TRUE
n1qn1 <- function(call_eval, call_grad, vars, environment = parent.frame(1), ...,
                   epsilon = .Machine$double.eps, max_iterations = 100, nsim = 100,
                   imp = 0,
                   invisible = NULL,
                   zm = NULL, restart = FALSE,
                   assign = FALSE,
                   print.functions = FALSE) {
  if (!is.null(invisible)) {
    if (invisible == 1) {
      imp <- 0
      print.functions <- FALSE
    } else {
      print.functions <- TRUE
    }
  }
  if (!missing(max_iterations) && missing(nsim)) {
    nsim <- max_iterations * 10
  }
  n <- as.integer(length(vars))
  imp <- as.integer(imp)
  max_iterations <- as.integer(max_iterations)
  nsim <- as.integer(nsim)
  nzm <- as.integer(ceiling(n * (n + 13) / 2))
  nsim <- as.integer(nsim)
  epsilon <- as.double(epsilon)
  if (is.null(zm)) {
    mode <- 1L
    zm <- double(nzm)
  } else {
    mode <- 2L
    if (restart) model <- 3L
    if (length(zm) != nzm) {
      stop(sprintf("Compressed Hessian not the right length for this problem.  It should be %d.", nzm))
    }
  }
  ret <- .Call(
    n1qn1_wrap, call_eval, call_grad, environment,
    vars, epsilon, n, mode, max_iterations, nsim, imp, nzm, zm, as.integer(print.functions)
  )
  if (assign) environment$c.hess <- ret$hess
  return(ret)
}

Try the n1qn1 package in your browser

Any scripts or data that you put into this service are public.

n1qn1 documentation built on Sept. 18, 2024, 1:06 a.m.