Nothing
Code
as.data.frame(res[1:5, ])
Output
nam mpg cyl disp hp drat wt qsec vs am gear carb large
1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 TRUE
2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 TRUE
3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 FALSE
4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 TRUE
5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 TRUE
fac
1 m
2 m
3 d
4 h
5 h
Code
sapply(res, class)
Output
nam mpg cyl disp hp drat
"character" "numeric" "integer" "numeric" "numeric" "numeric"
wt qsec vs am gear carb
"numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
large fac
"logical" "factor"
Code
arrow_find_special(base64_encode("foobar"), "myfile")
Condition
Warning in `value[[3L]]()`:
Failed to parse Arrow schema from parquet file at 'myfile'
Output
list()
Code
as.data.frame(read_parquet(pf))
Output
tt
1 14:30:00
2 11:35:00
3 01:59:00
Code
as.data.frame(d2)
Output
h
1 600 secs
Code
as.data.frame(read_parquet(pf))
Output
nam mpg cyl disp hp drat wt qsec vs am gear carb
1 <NA> 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 Mazda RX4 Wag NA 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 Datsun 710 22.8 NA 108.0 93 3.85 2.320 18.61 1 1 4 1
4 Hornet 4 Drive 21.4 6 NA 110 3.08 3.215 19.44 1 0 3 1
5 Hornet Sportabout 18.7 8 360.0 NA 3.15 3.440 17.02 0 0 3 2
6 Valiant 18.1 6 225.0 105 NA 3.460 20.22 1 0 3 1
7 Duster 360 14.3 8 360.0 245 3.21 NA 15.84 0 0 3 4
8 Merc 240D 24.4 4 146.7 62 3.69 3.190 NA 1 0 4 2
9 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 NA 0 4 2
10 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 NA 4 4
11 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 NA 4
12 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 NA
13 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
14 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
15 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
16 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
17 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
18 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
19 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
20 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
21 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
22 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
23 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
24 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
25 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
26 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
27 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
28 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
29 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
30 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
31 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
32 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
large
1 TRUE
2 TRUE
3 FALSE
4 TRUE
5 TRUE
6 TRUE
7 TRUE
8 FALSE
9 FALSE
10 TRUE
11 TRUE
12 TRUE
13 NA
14 TRUE
15 TRUE
16 TRUE
17 TRUE
18 FALSE
19 FALSE
20 FALSE
21 FALSE
22 TRUE
23 TRUE
24 TRUE
25 TRUE
26 FALSE
27 FALSE
28 FALSE
29 TRUE
30 TRUE
31 TRUE
32 FALSE
Code
as.data.frame(read_parquet(pf))
Output
FirstName Data
1 John 48, 65, 6c, 6c, 6f, 20, 57, 6f, 72, 6c, 64
2 John 48, 65, 6c, 6c, 6f, 20, 57, 6f, 72, 6c, 64
3 John 48, 65, 6c, 6c, 6f, 20, 57, 6f, 72, 6c, 64
4 John 48, 65, 6c, 6c, 6f, 20, 57, 6f, 72, 6c, 64
5 John 48, 65, 6c, 6c, 6f, 20, 57, 6f, 72, 6c, 64
Code
as.data.frame(read_parquet(pf))
Output
datatype_boolean
1 TRUE
2 FALSE
3 NA
4 TRUE
5 TRUE
6 FALSE
7 FALSE
8 TRUE
9 TRUE
10 TRUE
11 FALSE
12 FALSE
13 TRUE
14 TRUE
15 FALSE
16 NA
17 TRUE
18 TRUE
19 FALSE
20 FALSE
21 TRUE
22 TRUE
23 FALSE
24 NA
25 TRUE
26 TRUE
27 FALSE
28 FALSE
29 TRUE
30 TRUE
31 TRUE
32 FALSE
33 FALSE
34 FALSE
35 FALSE
36 TRUE
37 TRUE
38 FALSE
39 NA
40 TRUE
41 TRUE
42 FALSE
43 FALSE
44 TRUE
45 TRUE
46 TRUE
47 FALSE
48 FALSE
49 NA
50 TRUE
51 TRUE
52 FALSE
53 FALSE
54 TRUE
55 TRUE
56 TRUE
57 FALSE
58 TRUE
59 TRUE
60 FALSE
61 NA
62 TRUE
63 TRUE
64 FALSE
65 FALSE
66 TRUE
67 TRUE
68 TRUE
Code
read_parquet_metadata(pf)$column_chunks$encodings
Output
[[1]]
[1] "RLE" "DELTA_BINARY_PACKED"
[[2]]
[1] "RLE" "DELTA_BINARY_PACKED"
Code
read_parquet(pf)
Output
# A data frame: 20 x 2
x y
<int> <int>
1 1 -10
2 2 -9
3 3 -8
4 4 -7
5 5 -6
6 6 -5
7 7 -4
8 8 -3
9 9 -2
10 10 -1
11 1001 11
12 1002 12
13 1003 13
14 1004 14
15 1005 15
16 1006 16
17 1007 17
18 1008 18
19 1009 19
20 1010 20
Code
read_parquet_metadata(pf2)$column_chunks$encodings
Output
[[1]]
[1] "RLE" "DELTA_BINARY_PACKED"
[[2]]
[1] "RLE" "DELTA_BINARY_PACKED"
Code
read_parquet(pf2)
Output
# A data frame: 20 x 2
x y
<int> <int>
1 1 -10
2 2 NA
3 3 -8
4 4 -7
5 5 -6
6 NA -5
7 NA -4
8 8 -3
9 9 -2
10 10 -1
11 1001 11
12 1002 12
13 NA NA
14 1004 14
15 1005 15
16 NA 16
17 1007 17
18 1008 NA
19 NA 19
20 1010 20
Code
read_parquet_metadata(pf3)$column_chunks$encodings
Output
[[1]]
[1] "RLE" "DELTA_BINARY_PACKED"
Code
read_parquet(pf3)
Output
# A data frame: 7 x 1
x
<dbl>
1 -100
2 -1
3 0
4 2
5 4
6 5
7 100
Code
as.data.frame(read_parquet(pf))
Output
u
1 <NA>
2 <NA>
3 <NA>
4 <NA>
5 ffffffff-ffff-ffff-ffff-ffffffffffff
6 ffffffff-ffff-ffff-ffff-ffffffffffff
7 a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11
8 a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11
9 a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11
10 a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11
11 8fffffff-ffff-ffff-ffff-ffffffffffff
12 8fffffff-ffff-ffff-ffff-ffffffffffff
13 8fffffff-ffff-ffff-8fff-ffffffffffff
14 8fffffff-ffff-ffff-8fff-ffffffffffff
15 8fffffff-ffff-ffff-8000-000000000000
16 8fffffff-ffff-ffff-8000-000000000000
17 8fffffff-ffff-ffff-0000-000000000000
18 8fffffff-ffff-ffff-0000-000000000000
19 80000000-0000-0000-ffff-ffffffffffff
20 80000000-0000-0000-ffff-ffffffffffff
21 80000000-0000-0000-8fff-ffffffffffff
22 80000000-0000-0000-8fff-ffffffffffff
23 80000000-0000-0000-8000-000000000000
24 80000000-0000-0000-8000-000000000000
25 80000000-0000-0000-0000-000000000000
26 80000000-0000-0000-0000-000000000000
27 47183823-2574-4bfd-b411-99ed177d3e43
28 47183823-2574-4bfd-b411-99ed177d3e43
29 47183823-2574-4bfd-b411-99ed177d3e43
30 47183823-2574-4bfd-b411-99ed177d3e43
31 10203040-5060-7080-0102-030405060708
32 10203040-5060-7080-0102-030405060708
33 10203040-5060-7080-0102-030405060708
34 10203040-5060-7080-0102-030405060708
35 00000000-0000-0000-8000-000000000001
36 00000000-0000-0000-8000-000000000001
37 00000000-0000-0000-0000-000000000001
38 00000000-0000-0000-0000-000000000001
39 00000000-0000-0000-0000-000000000000
40 00000000-0000-0000-0000-000000000000
Code
as.data.frame(dlba)[1:10, ]
Output
[1] "apple_banana_mango0" "apple_banana_mango1" "apple_banana_mango4"
[4] "apple_banana_mango9" "apple_banana_mango16" "apple_banana_mango25"
[7] "apple_banana_mango36" "apple_banana_mango49" "apple_banana_mango64"
[10] "apple_banana_mango81"
Code
rle(nchar(dlba$FRUIT))
Output
Run Length Encoding
lengths: int [1:6] 4 6 22 68 217 683
values : int [1:6] 19 20 21 22 23 24
Code
as.data.frame(dba)[1:5, ]
Output
c_customer_id c_salutation c_first_name c_last_name c_preferred_cust_flag
1 AAAAAAAAIODAAAAA Sir Mark Bailey N
2 AAAAAAAAHODAAAAA Mrs. Lisa Clark Y
3 AAAAAAAAGODAAAAA Ms. Evelyn Joyner N
4 AAAAAAAAFODAAAAA Sir Harvey <NA> N
5 AAAAAAAAEODAAAAA Dr. Chris Davis Y
c_birth_country c_login c_email_address c_last_review_date
1 MOROCCO <NA> Mark.Bailey@rg9qCNVJ0s7qeY.com 2452443
2 ITALY <NA> Lisa.Clark@goPYS4tMB0.org 2452646
3 TUVALU <NA> Evelyn.Joyner@ialYx1zLN.edu 2452439
4 <NA> <NA> Harvey.Stanford@sl59JiHqrp8X.org 2452632
5 ALBANIA <NA> Chris.Davis@k6S3Q.com 2452570
Code
as.data.frame(bss)[1:5, ]
Output
floats doubles nullable_floats
1 27.39234 -4.002415 NA
2 -46.04266 -53.525416 NA
3 -91.80530 60.376116 70.37518
4 -96.69447 84.706032 -72.21366
5 62.65405 -46.773946 40.75715
Code
as.data.frame(bss)[1:5, ]
Output
float16_plain float16_byte_stream_split float_plain float_byte_stream_split
1 10.304688 10.304688 10.337575 10.337575
2 8.960938 8.960938 11.407482 11.407482
3 10.750000 10.750000 10.090585 10.090585
4 10.937500 10.937500 10.643939 10.643939
5 8.046875 8.046875 7.949828 7.949828
double_plain double_byte_stream_split int32_plain int32_byte_stream_split
1 9.820389 9.820389 24191 24191
2 10.196776 10.196776 41157 41157
3 10.820528 10.820528 7403 7403
4 9.606259 9.606259 79368 79368
5 10.521167 10.521167 64983 64983
int64_plain int64_byte_stream_split flba5_plain
1 2.93650e+11 2.93650e+11 30, 33, 37, 39, 35
2 4.10790e+10 4.10790e+10 30, 30, 33, 36, 33
3 5.12480e+10 5.12480e+10 30, 31, 30, 33, 38
4 2.46066e+11 2.46066e+11 31, 31, 39, 31, 34
5 5.72141e+11 5.72141e+11 30, 33, 31, 32, 35
flba5_byte_stream_split decimal_plain decimal_byte_stream_split
1 30, 33, 37, 39, 35 1003.858 1003.858
2 30, 30, 33, 36, 33 968.825 968.825
3 30, 31, 30, 33, 38 1104.934 1104.934
4 31, 31, 39, 31, 34 932.398 932.398
5 30, 33, 31, 32, 35 913.768 913.768
Code
as.data.frame(read_parquet(pf))
Output
value
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
Code
as.data.frame(read_parquet(pf))
Output
value
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
Code
as.data.frame(read_parquet_schema(pf))
Output
file_name name r_type type
1 data/float16_nonzeros_and_nans.parquet schema <NA> <NA>
2 data/float16_nonzeros_and_nans.parquet x raw FIXED_LEN_BYTE_ARRAY
type_length repetition_type converted_type logical_type num_children scale
1 NA REQUIRED <NA> 1 NA
2 2 OPTIONAL <NA> FLOAT16 NA NA
precision field_id
1 NA NA
2 NA NA
Code
as.data.frame(read_parquet(pf))
Output
x
1 NA
2 1
3 -2
4 NaN
5 0
6 -1
7 0
8 2
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.