nbfar_control | R Documentation |
Default value for a list of control parameters that are used to estimate the parameters of negative binomial co-sparse factor regression (NBFAR) and negative binomial reduced rank regression (NBRRR).
nbfar_control( maxit = 5000, epsilon = 1e-07, elnetAlpha = 0.95, gamma0 = 1, spU = 0.5, spV = 0.5, lamMaxFac = 1, lamMinFac = 1e-06, initmaxit = 10000, initepsilon = 1e-08, objI = 0 )
maxit |
maximum iteration for each sequential steps |
epsilon |
tolerance value required for convergence of inner loop in GCURE |
elnetAlpha |
elastic net penalty parameter |
gamma0 |
power parameter for generating the adaptive weights |
spU |
maximum proportion of nonzero elements in each column of U |
spV |
maximum proportion of nonzero elements in each column of V |
lamMaxFac |
a multiplier of the computed maximum value (lambda_max) of the tuning parameter |
lamMinFac |
a multiplier to determine lambda_min as a fraction of lambda_max |
initmaxit |
maximum iteration for minimizing the objective function while computing the initial estimates of the model parameter |
initepsilon |
tolerance value required for the convergence of the objective function while computing the initial estimates of the model parameter |
objI |
1 or 0 to indicate that the convergence will be on the basis of objective function or not |
a list of controlling parameter.
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
control <- nbfar_control()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.