Neo-Normal Distributions Family for MCMC Models in JAGS

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
if (requireNamespace("neojags", quietly = TRUE)){
      neojags::load.neojagsmodule()
} 
if (requireNamespace("neojags", quietly = TRUE)){
      library(rjags)
} 

Generate data

Create model for JAGS

mod <- "
model {
  # Likelihood
  for (i in 1:100) {
    x[i] ~ djskew.ep(2,1,0.8,1)
  }
}
"

Compile the model

modelv <- jags.model(textConnection(mod), n.chains=1, inits = list(".RNG.name" = "base::Wichmann-Hill",".RNG.seed" = 314159))

Generate samples

samplesv <- coda.samples(modelv, variable.names = c("x"), n.iter = 1)
gen_datav <- (as.data.frame(as.matrix(samplesv)))
x <- as.numeric(gen_datav[1,])

Parameter Estimation

Create model for JAGS

model_string <- "
model {
  # Likelihood
  for (i in 1:100) {
    x[i] ~ djskew.ep(mu, tau,nu1, nu2)
  }

  # Prior distributions
  mu ~ dnorm(2,10000)
  tau ~ dgamma(10,10)
  nu1 ~ dgamma(10,10)
  nu2 ~ dgamma(10,10)
}
"

Compile the model

model <- jags.model(textConnection(model_string), data = list(x=c(x)),n.chains=2)

Generate samples from the posterior distribution

samples<- coda.samples(model, variable.names = c("mu", "tau", "nu1", "nu2"), n.iter = 2000)

Summary Samples

summary(samples)

Traceplot

traceplot(samples)

Probability Density Function (PDF), Cumulative Density Function (CDF), and Invers CDF (Quantile)

model_string1 <- "
model {
    d <- djskew.ep(0.5,2,2,2,2)
        p <- pjskew.ep(0.5,2,2,2,2)
        q <- qjskew.ep(0.5,2,2,2,2)
}
"

Compile the model

model1 <- jags.model(textConnection(model_string1),  n.chains=2)

Generate samples from the posterior distribution

samples1<- coda.samples(model1, variable.names = c("d","p","q"), n.iter = 2)

Summary samples

summary(samples1)


Try the neojags package in your browser

Any scripts or data that you put into this service are public.

neojags documentation built on April 15, 2025, 1:26 a.m.